Эмбриология. Эмбриогенез. История эмбриологии. Что такое эмбриология Что изучает наука эмбриология

ЭМБРИОЛОГИЯ ЭМБРИОЛОГИЯ

(от эмбрион и...логия), в узком смысле - наука о зародышевом развитии, в широком - наука об индивидуальном развитии организмов (онтогенезе). Э. животных и человека изучает предзародышевое развитие (оогенез и сперматогенез), оплодотворение, зародышевое развитие, личиночный и постэмбриональный (или постнатальный) периоды индивидуального развития. Эмбриол. исследования в Индии, Китае, Египте, Греции известны до 5 в. до н. э. Гиппократ (с последователями) и Аристотель изучали развитие зародышей мн. животных, особенно кур, а также человека. Существенный сдвиг в развитии Э. наступил в сер. 17 в. с появлением работы У. Гарвея «Исследования о зарождении животных» (1651). Большое значение для развития Э. имела работа К. Ф. Вольфа «Теория зарождения» (1759), идеи к-рой были развиты в работах X. И. Пандера (представление о зародышевых листках), К. М. Бэра (открытие и описание яйца человека и млекопитающих, детальное описание осн. этапов эмбриогенеза ряда позвоночных, выяснение последующей судьбы зародышевых листков и т. д.) и др. Фундамент эволюц. сравнит. Э., основанной на теории Ч. Дарвина и обосновывающей, в свою очередь, родство животных разных таксонов, заложили А. О. Ковалевский и И. И. Мечников. Эксперим. Э. (первоначально - механика развития) своим развитием обязана работам В. Ру, X. Дриша, X. Шпемана, Д. П. Филатова. В истории Э. долгое время длилась борьба между сторонниками эпигенеза (У. Гарвей, К. Ф. Вольф, X. Дриш и др.) и преформизма (М. Мальпиги, А. Левенгук, Ш. Бонне и др.). В зависимости от задач и методов исследования различают общую, сравнительную, экспериментальную, популяционную и экологическую Э. На данных сравнит. Э. в значит, степени строится естеств. система животных, особенно в высших её разделах. Эксперим. Э. с помощью удаления, пересадки и культивирования вне организма зачатков органов и тканей изучает причинные механизмы их возникновения и развития в онтогенезе. Данные Э. имеют большое значение для медицины и с. х-ва. В последние десятилетия на стыке Э. с цитологией, генетикой и мол. биологией возникла биология развития. Э. растений (Э. р.), фитоэмбриология - частная дисциплина в рамках морфологии растений, изучающая образование и закономерности развития зародыша растений. В Э. голо- и покрытосеменных рассматривают процессы онтогенеза, происходящие в семяпочке или пветке, кроме того изучают строение и развитие гаметофитов, половых клеток и зигот. Накопление сведений по Э. р. началось в древности. В 16-18 вв. основное внимание было направлено на установление пола у цветковых растений, начатое в опытах по гибридизации (Й. Кёльрёйтер) и перекрёстному опылению (К. Шпренгель) и завершённое раскрытием значения перекрёстного опыления (Ч. Дарвин). Первое микроскопич. описание яйцеклетки и зародышевого мешка у цветковых было предпринято М. Мальпиги (1675), а открытие эндосперма в семени принадлежит Н. Грю (1672). Как самостоят, дисциплина Э. р. начала формироваться лишь в сер. 19 в., что в значит, степени было связано с разработкой клеточной теории, эволюционной теорией Дарвина и совершенствованием микроскопич. техники. К нач. 20 в. были сделаны фундаментальные открытия о закономерности развития мужского гаметофита у голо- и покрытосеменных растений (В. Гофмейстер, В. И. Беляев) и развитии пыльцевой трубки (Дж. Амичи); В. И. Беляевым описаны осн. звенья мейоза в спорогенных клетках. Спорные вопросы макроспорогенеза и двойного оплодотворения у покрытосеменных были разрешены трудами Э. Страсбургера, И. Н. Горожанкина и С. Г. Навашина. В результате классич. исследований сложилась современная проблематика в Э. р., включающая важные этапы онтогенеза - развитие пыльника, микро-спорогенез, формирование из микроспор мужского гематофита (пыльцевого зерна), образование пыльцевой трубки, макро-спорогенез и образование из макроспоры зародышевого мешка - женского гематофита, двойное оплодотворение, развитие эндосперма и зародыша. Помимо этих вопросов большое значение для генетико-селекпионных работ имеет изучение причин стерильности гамет и зигот, апомиксиса, полиэмбрионии, партенокарпии. Вопросы развития генеративных органов и их функций у низших групп (водоросли, лишайники, грибы), не имеющих зародыша, длительное время не рассматривались в Э. р. Однако в последние десятилетия наблюдается большой интерес к изучению этих групп с позиций фитоэмб-риологии. Сравнительная Э. р. занимается как изучением и сравнением особенностей развития эмбриональных признаков у представителей различных таксонов, так и сопоставлением характера чередования поколений в цикле развития растений. Результаты этих работ играют огромную роль в решении спорных вопросов систематики растений и при построении филогенетич. систем.

.(Источник: «Биологический энциклопедический словарь.» Гл. ред. М. С. Гиляров; Редкол.: А. А. Бабаев, Г. Г. Винберг, Г. А. Заварзин и др. - 2-е изд., исправл. - М.: Сов. Энциклопедия, 1986.)

эмбриоло́гия

Наука о зародышевом развитии человека, животных, растений. Выделяют общую, сравнительную, экспериментальную и экологическую эмбриологию. Одним из основоположников сравнительной эмбриологии животных был А.О. Ковалевский . В современной эмбриологии человека и животных особое значение приобрела экспериментальная эмбриология, позволяющая решать проблемы искусственного оплодотворения, клонирования, а также экологическая эмбриология, изучающая воздействие различных экологических факторов на развитие плода человека и животных.

.(Источник: «Биология. Современная иллюстрированная энциклопедия.» Гл. ред. А. П. Горкин; М.: Росмэн, 2006.)


Синонимы :

Смотреть что такое "ЭМБРИОЛОГИЯ" в других словарях:

    Эмбриология … Орфографический словарь-справочник

    - (от древнегреческого ἔμβρυον, зародыш, «эмбрион»; и λογία, логия) это наука, изучающая развитие зародыша. Зародышем называют любой организм на ранних стадиях развития до рождения или вылупления, или, в случае растений, до момента прорастания.… … Википедия

    Греч., от embryon, зародыш, и lego, говорю. Учение о зародышах. Объяснение 25000 иностранных слов, вошедших в употребление в русский язык, с означением их корней. Михельсон А.Д., 1865. ЭМБРИОЛОГИЯ учение о развитии животных и растительных… … Словарь иностранных слов русского языка

    эмбриология - ЖИВОТНЫХ ЭМБРИОЛОГИЯ – наука о строении и закономерностях развития зародыша. ЭМБРИОЛОГИЯ РАСТЕНИЙ ЭМБРИОЛОГИЯ – отрасль науки, изучающая возникновение и развитие мужского и женского гаметофитов, процессы оплодотворения, развития зародыша и… … Общая эмбриология: Терминологический словарь

    Современная энциклопедия

    эмбриология - и, ж. embriologie f. Отдел биологии, изучающий развитие эмбрионов животных, в том числе и человека. Уш. 1940. || устар., перен. Зачаточное состояние чего л. БАС 1. Не зная эмбриологии науки, не зная судеб ее, трудно понять ее современное… … Исторический словарь галлицизмов русского языка

    Эмбриология - (от эмбрион и...логия), наука, изучающая предзародышевое развитие (образование половых клеток), оплодотворение и зародышевое развитие организма. Первые знания в области эмбриологии связывают с именами Гиппократа и Аристотеля. Создателем… … Иллюстрированный энциклопедический словарь

    - (от эмбрион и...логия) наука о предзародышевом развитии (образование половых клеток), оплодотворении, зародышевом и личиночном развитии организма. Выделяют эмбриологию животных и человека и эмбриологию растений. Различают общую, сравнительную,… … Большой Энциклопедический словарь

    ЭМБРИОЛОГИЯ, биологическая дисциплина, изучающая происхождение, развитие и функционирование эмбрионов, как животных, так и растительных. Эта дисциплина прослеживает все стадии процесса от оплодотворения ЯЙЦЕКЛЕТКИ (ЯЙЦА) до рождения (вылупления,… … Научно-технический энциклопедический словарь

    ЭМБРИОЛОГИЯ, эмбриологии, мн. нет, жен. Отдел биологии, изучающий развитие эмбрионов животных, в том числе человека. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

Книги

  • Гистология и эмбриология органов полости рта и зубов. Учебное пособие , Гемонов Владимир Владимирович , Лаврова Эмилия Николаевна , Фалин Л. И. , Учебное пособие включает теоретическую часть по эмбриологии и гистологии органов полости рта и зубов, атлас, практикум, контрольно-обучающие материалы (примеры) сконтрольными вопросами,… Категория: Анатомия и физиология Издатель:

Эмбриология изучает особенности развития зародыша от момента зачатия до появления на свет ребенка. Процесс эмбриогенеза , являющийся основным предметом исследований науки, можно разделить на несколько стадий:

  • образование зиготы, происходящее в момент оплодотворения яйцеклетки сперматозоидом;
  • образование бластулы вследствие активного дробления клеток;
  • гаструляция, подразумевающая под собой появление основных зародышевых листков и органов;
  • гистогенез и органогенез органов и тканей плода, плаценты;
  • системогенез, означающий формирование всех основных систем организма ребенка.

Кроме того, благодаря эмбриологии стали известны наиболее опасные периоды внутриутробного развития, способные негативно повлиять на плод под воздействием определенных факторов. Так, критическими считаются следующие моменты онтогенеза:

  • само оплодотворение;
  • внедрение эмбриона в стенку матки, происходящее на 7-е сутки;
  • формирование зачатков основных тканей, длящееся с 3 по 8 неделю;
  • образование головного мозга, происходящее с 15 по 20 неделю;
  • развитие всех органов и систем плода (с 20 по 24 неделю);
  • рождение.

В эти периоды влияние различных внутренних и внешних процессов может привести к замедленному, неправильному развитию или даже смерти ребенка. Поэтому на данных сроках беременности стоит уделить особое внимание здоровью женщины и плода.


Клиническая эмбриология изучает проблемы и отклонения от нормы в онтогенезе, ищет способы их решения и помогает избежать каких-либо нарушений. Кроме того, эта наука ищет вероятные причины различных патологий развития (в том числе возникновения уродств), факторы, действующие на течение эмбриогенеза, а также способы влияния на него на всех возможных этапах. Также к предметам изучения можно отнести бесполое размножение, регенерацию и патологическое развитие тканей и органов. Существуют школы, исследующие проблемы онкологических новообразований, их закономерности и причины возникновения.

История эмбриологии

Еще в древние времена ученых интересовали загадки возникновения и развития ребенка в утробе матери. Гиппократ и Аристотель были основоположниками самых известных теорий эмбриогенеза, соперничавших друг с другом почти до 19 века: перформизма и эпигенеза.


Представители идеи перформизма считали, что новый организм присутствует в «яйце» уже в готовом состоянии, лишь очень уменьшенный в размере, и со временем он только увеличивается в размерах. Однако теоретики не знали точно, в материнском теле или отцовском содержатся эмбрионы и каким образом им передаются свойства второго родителя.


Одним из приверженцев перформизма был математик Г. Лейбниц, выдвинувший предположение, что если в яйцеклетке есть эмбрионы, то в его яичниках должны быть сами яйцеклетки со следующим поколением зародышей и так далее. Другим примером схожих взглядов можно назвать теорию Сваммердама, утверждающую, что в яйце бабочки находится гусеница, в самой гусенице – куколка, а в ней – бабочка.


Ученые, придерживающиеся эпигенеза, ярким представителем которого являлся У. Гарвей, считали, что в «яйце» содержится бесструктурное вещество, хранящее потенциал для образования будущих органов и тканей. В 18 веке К. Ф. Вольфом в ходе исследований куриных зародышей сделал открытие первичных пластов, которые затем формируют органы. В начале 19 века это наблюдение было подтверждено и стало общепринятым мнением среди ученых.


В это же время большое открытие было сделано К. Бэром. Изучая зародыши позвоночных, он пришел к выводу, что все они на самых ранних этапах развития схожи между собой. Причем с течением времени у них появляется все больше различий. То есть эмбриогенез происходит от общего к частному, вначале формируя признаки типа, затем класса и так далее. Таким образом, возникло понятие о филогенезе, или повторении процессов эволюции за время онтогенеза человека. Позднее на основании этой теории был сформирован биогенетический закон, описывающийся в трудах Ч. Дарвина.


Также получило известность учение о рекапитуляции – повторении высшими организмами этапов развития более низших. Кроме того, большой вклад в развитие эмбриологии внесли А. Ковалевский, И. Мечников, доказавшие, что эмбриогенез всех млекопитающих проходит через образование трех зародышевых листков. Кроме того, неоценимы заслуги П. Светлова, являющегося основоположником теории о критических моментах эмбриогенеза.


Экспериментальная эмбриология, как наука, стала развиваться благодаря В. Ру, который путем изоляции бластомеров выявил некоторые закономерности в эмбриогенезе и патологии при действии определенных факторов. В 20 веке появилось новое направление в науке – микрохирургия на зародышах. Вследствие этого были придуманы новые методики: снятие оболочек с яйца, пересадка частей зародыша и приготовление питательной среды для развития эмбриона.

Эмбриология в наше время

Наука, изучающая эмбриогенез, в настоящее время достигла больших результатов. Различают несколько направлений эмбриологии:

  • общая эмбриология;
  • сравнительная;
  • экологическая;
  • экспериментальная;
  • онтогенетическая.

Все они тесно связаны с цитологией, гистологией, медициной, биохимией, биологией, генетикой и физиологией.


Есть несколько методов изучения эмбриогенеза и зародышей как таковых. К ним относятся:

  • исследование фиксированных срезов при помощи различных методик (световой микроскопии, иммуноцитохимии и других);
  • метод маркирования клеток эмбриона, позволяющий следить за их изменениями;
  • эксплантация, суть которой заключается в переносе отдельной части зародыша на питательную среду для выращивания и изучения;
  • трансплантация ядра, с помощью которой стало возможным осуществить клонирование.

Благодаря успехам и исследованиям в эмбриологии стало возможным не только следить за этапами развития плода, но и управлять ими, предотвращать появление пороков и уродств. Кроме того, женщины, в анамнезе которых отмечаются постоянные выкидыши или бесплодие, получили шанс стать матерями.


Методы искусственного оплодотворения и суррогатного материнства получили свое существование только с помощью достижений и методик эмбриологии. Теперь образование эмбриона, его рост можно осуществлять в искусственных условиях, на специально подготовленной питательной среде. Кроме того, исследуя зародыши, эмбриологи могут совершить отбор более жизнеспособных зародышей от патологических и слабых, и тем самым не допустить случаев замершей беременности или рождения ребенка с пороками развития.


В клиниках ЭКО, научно-исследовательских институтах есть специалисты, занимающиеся проблемами оплодотворения и внутриутробного развития. Стоит отметить, что эта область медицины достигла значительных высот и продолжает развиваться, открывая новые горизонты и возможности для людей. Ее роль в современном мире становится все более значительной.

Занятие 4

Эмбриология

1. Общие понятия эмбриологии.

2. Методы исследования в эмбриологии.

3. Особенности половых клеток. Классификация яйцеклеток.

4. Характеристика отдельных этапов эмбриогенеза.

5. Плацента: формирование и типы плацент у млекопитающих.

6. Провизорные органы. Строение и функции.

Общие понятия эмбриологии.

Эмбриология - это наука о закономерностях эмбрионального развития организма от момента оплодотворения до рождения. Нас в большей степени интересует медицинская эмбриология, которая изучает закономерности развития зародыша человека, причины уродств и пути влияния на эмбриональное развитие. Но сегодня мы рассмотрим эмбриональное развитие в сравнительном аспекте у ланцетника, лягушки, птиц и млекопитающих, т.к. у человека наблюдается явление рекапитуляции - т.е. повторение многих этапов эмбрионального развития этих видов.

Эмбриология животных и человека изучает предзародышевое развитие (оогенез, сперматогенез), оплодотворение, зародышевое развитие, т. е. развитие зародыша внутри яйцевых и зародышевых оболочек, личиночный (у многих беспозвоночных, а также у земноводных), постэмбриональный (у рыб, пресмыкающихся и птиц) или постнатальный (у млекопитающих) период развития, продолжающийся до превращения развивающегося организма во взрослый, способный размножаться. В зависимости от задач и методов исследования различают Эмбриология общую, сравнительную, экспериментальную и экологическую. Успешно развивается биохимическая Эмбриология На стыке Эмбриология с цитологией, генетикой, биохимией, молекулярной биологией и др. возникла более широкая наука о закономерностях индивидуального развития - биология развития, или онтогенетика.

Все разделы Эмбриология тесно связаны с проблемами общей биологии, прежде всего с эволюционным учением. Морфологическая часть Эмбриология служит основой сравнительной анатомии. Естественная система животных, особенно в крупных её разделах, строится в значительной степени на эмбриологических данных. Эмбриология тесно связана с гистологией и цитологией, а также с физиологией и генетикой.

История эмбриологии . Эмбриологические исследования в Индии, Китае, Египте и Греции до 5 в. до н. э. в значительной мере отражали религиозно-философские учения. Однако сложившиеся в то время взгляды оказали известное влияние на последующее развитие Эмбриология , основоположниками которой следует считать Гиппократа (а также примыкавших к нему авторов т. н. «Гиппократовского сборника») и Аристотеля. Гиппократ и его последователи наибольшее внимание уделяли изучению развития зародыша человека, рекомендуя лишь для сравнения изучать формирование цыплёнка в яйце. Аристотель широко пользовался наблюдениями и в дошедших до нас сочинениях «История животных» и «О возникновении животных» сообщил данные о развитии человека, млекопитающих, птиц, пресмыкающихся и рыб, а также многих беспозвоночных. Наиболее подробно Аристотель изучал развитие куриного зародыша. Учение Аристотеля о последовательном формировании органов в эмбриогенезе связано с эпигенетическими представлениями (см. Эпигенез); он противопоставлял их представлениям авторов «Гиппократовского сборника» о предсуществовании в отцовском или материнском «семени» всех частей будущего плода. Эмбриологические воззрения Аристотеля сохранялись в течение всего средневековья вплоть до 16 в. без существенных изменений. Важным этапом развития Эмбриология явился выход в свет трудов голландского учёного В. Койтера (1573) и итальянского учёного Фабриция из Аквапенденте (1604), содержащих новые наблюдения над развитием куриного зародыша. Существенный сдвиг в развитии Эмбриология наступил только с середины 17 в., когда появилось сочинение У. Гарвея «Исследования о зарождении животных» (1651), материалом для которого послужило изучение развития цыплёнка и млекопитающих. Гарвей обобщил представления о яйце как источнике развития всех животных, однако, как и Аристотель, считал, что развитие позвоночных происходит в основном путём эпигенеза, утверждал, что ни одна часть будущего плода «не существует в яйце актуально, но все части находятся в нём потенциально»; впрочем, для насекомых он допускал, что их тело возникает путём «метаморфоза» изначально предшествующих частей. Яйца млекопитающих Гарвей не видел, так же как и голландский учёный Р. де Грааф (1672), принявший за яйца фолликулы яичника, получившие впоследствии название граафовых пузырьков. Итальянский учёный М. Мальпиги (1672) с помощью микроскопа обнаружил органы на тех стадиях развития цыплёнка, на которых ранее не удавалось видеть сформированные части зародыша. Мальпиги примкнул к преформистским представлениям (см. Преформация, Преформизм), господствовавшим в Эмбриология почти до конца 18 в.; главными их защитниками выступали швейцарские учёные А. Галлер и Ш. Бонне. Решительный удар представлениям о преформации, неразрывно связанным с идеей неизменности живых существ, нанёс К. Ф. Вольф в диссертации «Теория зарождения» (1759, издана на русском языке в 1950). В России влияние идей Вольфа сказалось в эмбриологических исследованиях Л. Тредерна, Х. И. Пандера и К. М. Бэра. Х. И. Пандер в 1817 опубликовал работу о некоторых деталях ранних этапов эмбриогенеза цыплёнка, в которой изложил свои представления о зародышевых листках. Основатель современной Эмбриология К. М. Бэр открыл и описал в 1827 яйцо в яичнике млекопитающих животных и человека. В классическом труде «Об истории развития животных» Бэр впервые детально описал главные черты эмбриогенеза ряда позвоночных. Он развил понятие о зародышевых листках как основных эмбриональных органах и выяснил их последующую судьбу. Сравнительные наблюдения над эмбриональным развитием птиц, млекопитающих, пресмыкающихся, земноводных и рыб привели Бэра к теоретическим заключениям, важнейшим из которых является закон сходства зародышей, относящихся к разным классам позвоночных; это сходство тем более, чем моложе зародыш. Бэр связывал этот факт с тем, что в зародыше по мере его развития раньше всего появляются свойства типа, затем класса, отряда и т. д.; видовые и индивидуальные особенности появляются последними. При известной схематичности этого положения оно сыграло важную роль в развитии сравнительной Эмбриология позвоночных. Существенное значение в прогрессе Эмбриология позвоночных имели работы немецкого учёного Р. Ремака, установившего, в частности, клеточное строение зародышевых листков. Начало исследований в области Эмбриология беспозвоночных относится к середине 19 в. А. Грубе изучал развитие пиявок (1844), Н. А. Варнек - эмбриогенез брюхоногих моллюсков (1850). Материалы по развитию различных представителей других типов беспозвоночных продолжали затем накапливаться в исследованиях многих учёных.

Фундамент эволюционной сравнительной Эмбриология , основан на теории Ч. Дарвина и доставляющей, в свою очередь, последней убедительные доказательства родства животных, относящихся к разным типам, заложили А. О. Ковалевский и И. И. Мечников, имевшие многочисленных последователей как в России, так и за её пределами. Ковалевский и Мечников установили, что развитие всех типов беспозвоночных проходит через стадию обособления зародышевых листков, гомологичных зародышевым листкам позвоночных. Этот факт лег в основу теории зародышевых листков Ковалевского (1871), согласно которой у всех многоклеточных животных основные системы органов закладываются в виде слоев клеток, что свидетельствует о единстве происхождения всех типов многоклеточных животных. На этой теории были построены в дальнейшем гипотеза Гастрси Эмбриология Геккеля (о происхождении многоклеточных) и учение О. Гертвига и Р. Гертвига о происхождении и значении среднего зародышевого листка. В развитии сравнительной Эмбриология крупную роль сыграли работы русских учёных - А. Н. Северцова и ряда представителей его школы, а также В. В. Заленского, В. М. Шимкевича, П. П. Иванова, Н. В. Бобрецкого, А. А. Коротнева, Н. Ф. Кащенко, М. И. Усова, Эмбриология А. Мейера, С. М. Переяславцевой и др. Значительную роль в установлении закономерностей эмбрионального развития сыграл метод «поклеточного прослеживания» - выяснение генеалогии бластомеров, т. е. судьбы в последующем развитии первых клеток, на которые делится дробящееся яйцо. Параллельно с описательными исследованиями развивалась экспериментальная Эмбриология Опыты по значению кислорода для развития куриных яиц ставил ещё Эмбриология Жоффруа Сент-Илер (1820). Важную роль в обосновании принципов экспериментальной Эмбриология , первоначально называемой механикой развития, сыграли исследования немецких учёных В. Ру и Х. Дриша, позднее - Х. Шпемана и советского учёного Д. П. Филатова. Экспериментальная Эмбриология стала ареной острых дискуссий, связанных с проблемами общей биологии, поскольку в этой области сталкивались попытки механистических (В. Ру, американский учёный Ж. Лёб и др.) и виталистических (Х. Дриш и др.) истолкований эмбрионального развития. Кроме того, экспериментальная Эмбриология долгое время не была связана с эволюционным учением.

Методы эмбриологических исследований очень разнообразны. При морфологических исследованиях пользуются всевозможными видами световой микроскопии и электронной микроскопией. Особенно важны методы прижизненного наблюдения, в частности - прослеживание перемещений эмбрионального материала (морфогенетических движений) при помощи меток, наносимых на зародыш прижизненными красителями, а также методы гистохимии, применение радиоактивных изотопов и др. В основе экспериментальных методов Эмбриология лежит удаление и трансплантация различных частей зародыша. Начиная с 50-х гг. преимущественное значение приобрели биохимические методы.

Современная Эмбриология ставит своей задачей дальнейшее изучение проэмбрионального развития, оплодотворения, дробления, образования зародышевых листков, органогенеза, гистогенеза, значения провизорных органов и различных проявлений патологического развития. Особенно много исследований посвящается стимуляции развития при помощи химических агентов, выявлению движущих сил эмбрионального формообразования, вскрытию генетических и цитологических основ клеточной дифференцировки.

В 20-40-х гг. большую роль в развитии Эмбриология сыграли работы Х. Шпемана и его школы по влиянию одних частей зародыша на другие; были введены понятия «индуктор», «организатор». Д. П. Филатов и другие советские исследователи развили учение Х. Шпемана и внесли в него существенные поправки, указав, в частности, на ошибочное представление о якобы индифферентном зародышевом материале, при соприкосновении с которым индуктор вызывает в нём развитие тех или иных органов. Д. П. Филатов связал экспериментальную Эмбриология с эволюционным учением и сформулировал понятие о формообразовательном аппарате («индуктор» и реагирующие на него эмбриональные ткани), т. е. тех частях зародыша, взаимодействие которых (а не одностороннее влияние одной части на другую) приводит к осуществлению определённых этапов развития, наметил пути эволюционного преобразования формообразовательных аппаратов.

В области сравнительной Эмбриология важным этапом было создание П. П. Ивановым теории ларвальных сегментов, объяснившей закономерности формирования тела метамерных животных. Наряду с учением об эмбриональной индукции, высказывались и другие предположения о механизмах, управляющих эмбриональным развитием. Например, американский биолог Ч. Чайлд считал, что определяющую роль в развитии играют изменения функциональных различий по осям тела развивающегося зародыша, т. е. физиологический градиент. А. Г. Гурвич и ряд его последователей утверждали, что упорядоченность структур и процессов в развитии зародыша определяется «биологическим полем». Советские биологи сделали существенный вклад в понимание закономерностей индивидуального развития: Н. К. Кольцов выдвинул гипотезу синтеза Эмбриология и генетики; П. Г. Светлев предложил оригинальный вариант теории «критических» периодов в развитии организма; Б. П. Токин и другие исследовали соматический эмбриогенез, т. е. развитие организмов из соматических клеток; О. М. Иванова-Казас осуществила исследования в области сравнительной Эмбриология беспозвоночных и полиэмбрионии; ученики Д. П. Филатова - Т. А. Детлаф и другие провели многочисленные работы по органогенезу. Большое значение для развития современной Эмбриология имеют работы И. И. Шмальгаузена, особенно его исследования корреляций, новых взаимодействий частей организма, возникающих в онтогенезе и определяющих процессы развития. Большинство генетиков считает, что процесс осуществления эмбрионального формообразования зависит от наличия в оплодотворённом яйце наследственной информации, заключённой в молекулах ДНК ядра, состоящей из дискретных частей - генов. Гены через посредство информационной рибосомной и транспортной РНК управляют синтезом белков и, в конечном счёте, - развитием морфологических признаков развивающегося организма. Геном зародыша функционирует уже в оплодотворённом яйце, но сначала транскрибируется только часть генетической информации, а остальная остаётся в неактивном состоянии и используется на последующих стадиях развития. Особенно возрастает разнообразие генетической информации начиная со стадии гаструлы, чем обеспечивается специфический характер дифференцировки различных типов клеток. Тотипотентность ядер на ранних стадиях развития доказана в опытах американских учёных Р. Бригса и Т. Кинга (1952 и позже), показавших, что пересадка ядер из клеток зародыша в энуклеированное яйцо лягушки приводит к развитию полноценного организма.

Основной научно-исследовательский центр Эмбриология в СССР - институт биологии развития им. Н. К. Кольцова АН СССР. Эмбриология преподаётся в университетах и педагогических институтах; в медицинских институтах сведения по Эмбриология предусмотрены в курсах анатомии, гистологии и общей биологии. Существует общество анатомов, гистологов и эмбриологов; в составе Московского общества испытателей природы имеется секция цитологии, гистологии и эмбриологии, а в Ленинградском обществе естествоиспытателей - секция биологии развития.

Большую роль в развитии Эмбриология играют периодические издания: в СССР издаются «Архив анатомии, гистологии и эмбриологии» (с 1916); «Онтогенез» (с 1970); «Успехи современной биологии» (с 1932) и др. За рубежом выходят основанный В. Ру журнал «Archiv für Entwicklungs-mechanik der Organismen» (B. - Hdlb. - N. Y.- Мunch., 1894-), получивший имя Ру после его смерти («W. Roux"s Archives»); Biological Bulletin» (Lancaster, с 1898); «Journal of Experimental Zoology» (Phil., с 1904); «Journal of Embryology and Experimental Morphology» (L. - N. Y., с 1953); «Developmental Biology» (N. Y., с 1959) и др. Начиная с 1949 регулярно созываются международные эмбриологические конгрессы и конференции.

2. Методы эмбриологических исследований :

1. Визуальное наблюдение развития зародышей, настоящее время дополнительно фиксируемое микрокино- или видеосьемками.

2. Метод изучения фиксированных зародышей на разных этапах с последующей микроскопией.

3. Метод маркировки клеток с последующим прослеживанием перемещений маркированных клеток в тканях и органах зародыша. В качестве маркера раньше использовали угольную пыль, позже - нейтральные красители, в настоящее время используют антитела к определенным белкам развивающегося зародыша, причем эти антитела обычно мечены флуоресцином.

4. Метод микрохирургии - удаление отдельных частей зародыша.

5. Метод трансплантации части от одного зародыша к другому.


Похожая информация.


ЭМБРИОЛОГИЯ
наука, изучающая развитие организма на самых ранних стадиях, предшествующих метаморфозу, вылуплению или рождению. Слияние гамет - яйца (яйцеклетки) и сперматозоида - с образованием зиготы дает начало новой особи, но прежде чем стать таким же существом, как родители, ей предстоит пройти определенные стадии развития: клеточное деление, образование первичных зародышевых листков и полостей, возникновение осей зародыша и осей симметрии, развитие целомических полостей и их производных, образование внезародышевых оболочек и, наконец, появление систем органов, функционально интегрированных и образующих тот или иной узнаваемый организм. Все это составляет предмет изучения эмбриологии. Развитию предшествует гаметогенез, т.е. образование и созревание сперматозоида и яйца. Процесс развития всех яиц данного вида протекает в общем одинаково.
Гаметогенез. Зрелые сперматозоид и яйцо различаются по своему строению, сходны у них только ядра; однако обе гаметы образуются из одинаковых на вид первичных половых клеток. У всех организмов, размножающихся половым путем, эти первичные половые клетки обособляются на ранних стадиях развития от других клеток и развиваются особым образом, готовясь к выполнению своей функции - продуцированию половых, или зародышевых, клеток. Поэтому их называют зародышевой плазмой - в отличие от всех других клеток, составляющих соматоплазму. Совершенно очевидно, однако, что и зародышевая плазма и соматоплазма происходят из оплодотворенного яйца - зиготы, давшей начало новому организму. Таким образом, в своей основе они одинаковы. Факторы, определяющие, какие клетки станут половыми, а какие - соматическими, до сих пор не установлены. Однако в конечном итоге половые клетки приобретают достаточно четкие отличия. Эти отличия возникают в процессе гаметогенеза. У всех позвоночных и некоторых беспозвоночных первичные половые клетки возникают вдали от гонад и мигрируют к гонадам зародыша - яичнику или семеннику - с током крови, с пластами развивающихся тканей или посредством амебоидных движений. В гонадах из них образуются зрелые половые клетки. Ко времени развития гонад сома и зародышевая плазма функционально уже обособлены одна от другой, и, начиная с этого времени, на протяжении всей жизни организма половые клетки совершенно независимы от каких бы то ни было воздействий сомы. Именно поэтому признаки, приобретенные индивидом на протяжении его жизни, не оказывают влияния на его половые клетки. Первичные половые клетки, находясь в гонадах, делятся с образованием мелких клеток - сперматогониев в семенниках и оогониев в яичниках. Сперматогонии и оогонии продолжают многократно делиться, образуя клетки таких же размеров, что свидетельствует о компенсаторном росте как цитоплазмы, так и ядра. Сперматогонии и оогонии делятся митотически, и, следовательно, у них сохраняется первоначальное диплоидное число хромосом. Спустя некоторое время эти клетки прекращают делиться и вступают в период роста, в течение которого в их ядрах происходят очень важные изменения. Хромосомы, полученные исходно от двух родителей, соединяются попарно (конъюгируют), вступая в очень тесное соприкосновение. Это делает возможным последующий кроссинговер (перекрест), в ходе которого гомологичные хромосомы разрываются и соединяются в новом порядке, обмениваясь эквивалентными участками; в результате кроссинговера в хромосомах оогониев и сперматогониев возникают новые комбинации генов. Предполагается, что стерильность мулов обусловлена несовместимостью хромосом, полученных от родителей - лошади и осла, из-за которой хромосомы не способны выжить при тесном соединении друг с другом. В результате созревание половых клеток в яичниках или семенниках мула прекращается на стадии конъюгации. Когда ядро перестроилось и в клетке накопилось достаточное количество цитоплазмы, возобновляется процесс деления; вся клетка и ядро подвергаются двум разного типа делениям, определяющим собственно процесс созревания половых клеток. Одно из них - митоз - приводит к образованию клеток, аналогичных исходной; в результате другого - мейоза, или редукционного деления, в ходе которого клетки делятся дважды, - образуются клетки, каждая из которых содержит лишь половинное (гаплоидное) число хромосом по сравнению с исходным, а именно по одной из каждой пары (см. также КЛЕТКА). У некоторых видов эти клеточные деления происходят в обратном порядке. После роста и реорганизации ядер в оогониях и сперматогониях и непосредственно перед первым делением мейоза эти клетки получают названия ооцитов и сперматоцитов первого порядка, а после первого деления мейоза - ооцитов и сперматоцитов второго порядка. Наконец, после второго деления мейоза клетки, находящиеся в яичнике, называют яйцами (яйцеклетками), а находящиеся в семеннике - сперматидами. Теперь яйцо окончательно созрело, а сперматиде предстоит еще проделать метаморфоз и превратиться в сперматозоид. Здесь необходимо подчеркнуть одно важное различие между оогенезом и сперматогенезом. Из одного ооцита первого порядка в результате созревания получается только одно зрелое яйцо; остальные три ядра и небольшое количество цитоплазмы превращаются в полярные тельца, которые не функционируют как половые клетки и в дальнейшем дегенерируют. Вся цитоплазма и желток, которые могли бы распределиться по четырем клеткам, концентрируются в одной - в зрелом яйце. В отличие от этого один сперматоцит первого порядка дает начало четырем сперматидам и такому же числу зрелых сперматозоидов, не теряя ни одного ядра. При оплодотворении восстанавливается диплоидное, или нормальное, число хромосом.



Яйцо. Яйцеклетка инертна и обычно крупнее соматических клеток данного организма. Яйцеклетка мыши составляет примерно 0,06 мм в диаметре, тогда как диаметр страусиного яйца бывает более 15 см. Яйца обычно имеют шаровидную или овальную форму, но бывают также продолговатыми, как у насекомых, миксины или ильной рыбы. Размеры и другие признаки яйца зависят от количества и распределения в нем питательного желтка, накапливающегося в виде гранул или, реже, в виде сплошной массы. Поэтому яйца делят на разные типы в зависимости от содержания в них желтка. Гомолецитальные яйца (от греч. homs - равный, однородный, lkithos - желток). В гомолецитальных яйцах, называемых также изолецитальными или олиголецитальными, желтка очень мало и он равномерно распределен в цитоплазме. Такие яйца типичны для губок, кишечнополостных, иглокожих, морских гребешков, нематод, оболочников и большинства млекопитающих. Телолецитальные яйца (от греч. tlos - конец) содержат значительное количество желтка, а цитоплазма сконцентрирована у них на одном конце, обозначаемом обычно как анимальный полюс. Противоположный полюс, на котором сконцентрирован желток, называют вегетативным. Такие яйца типичны для кольчатых червей, головоногих моллюсков, бесчерепных (ланцетник), рыб, земноводных, пресмыкающихся, птиц и однопроходных млекопитающих. У них хорошо выражена анимально-вегетативная ось, определяемая градиентом распределения желтка; ядро обычно располагается эксцентрически; в яйцах, содержащих пигмент, он также распределяется по градиенту, но, в отличие от желтка, его больше на анимальном полюсе.
Центролецитальные яйца. В них желток расположен в центре, так что цитоплазма сдвинута к периферии и дробление поверхностное. Такие яйца типичны для некоторых кишечнополостных и членистоногих.
Сперматозоид. В отличие от крупной и инертной яйцеклетки, сперматозоиды мелкие, от 0,02 до 2,0 мм в длину, они активны и способны проплыть большое расстояние, чтобы добраться до яйца. Цитоплазмы в них мало, а желтка нет вообще. Форма сперматозоидов разнообразна, однако среди них можно выделить два главных типа - жгутиковые и безжгутиковые. Безжгутиковые формы сравнительно редки. У большинства животных активная роль в оплодотворении принадлежит сперматозоиду. См. также СПЕРМАТОЗОИД .
Оплодотворение. Оплодотворение - сложный процесс, в ходе которого сперматозоид проникает в яйцо и их ядра сливаются. В результате слияния гамет образуется зигота - по существу уже новая особь, способная развиваться при наличии необходимых для этого условий. Оплодотворение вызывает активацию яйца, стимулируя его к последовательным изменениям, приводящим к развитию сформированного организма. При оплодотворении происходит также амфимиксис, т.е. смешение наследственных факторов в результате слияния ядер яйца и сперматозоида. Яйцо обеспечивает половину необходимых хромосом и обычно все питательные вещества, необходимые для ранних стадий развития. При соприкосновении сперматозоида с поверхностью яйца желточная оболочка яйца изменяется, превращаясь в оболочку оплодотворения. Это изменение считается доказательством того, что произошла активация яйца. Одновременно на поверхности яиц, содержащих мало желтка или не содержащих его вовсе, возникает т.н. кортикальная реакция, не допускающая проникновения в яйцо других сперматозоидов. У яиц, содержащих очень много желтка, кортикальная реакция возникает позднее, так что в них обычно проникает несколько сперматозоидов. Но даже в таких случаях оплодотворение совершает только один сперматозоид, первым дошедший до ядра яйца. У некоторых яиц в месте соприкосновения сперматозоида с плазматической мембраной яйца образуется выпячивание мембраны - т.н. бугорок оплодотворения; он облегчает проникновение сперматозоида. Обычно в яйцо проникают головка сперматозоида и центриоли, находящиеся в его средней части, а хвост остается снаружи. Центриоли способствуют образованию веретена при первом делении оплодотворенного яйца. Процесс оплодотворения можно считать завершенным, когда два гаплоидных ядра - яйцеклетки и сперматозоида - сливаются и их хромосомы конъюгируют, готовясь к первому дроблению оплодотворенного яйца.
См. также ЯЙЦО .
Дробление. Если возникновение оболочки оплодотворения считается показателем активации яйца, то деление (дробление) служит первым признаком действительной активности оплодотворенного яйца. Характер дробления зависит от количества и распределения желтка в яйце, а также от наследственных свойств ядра зиготы и особенностей цитоплазмы яйца (последние целиком определяются генотипом материнского организма). Выделяют три типа дробления оплодотворенного яйца. Голобластическое дробление характерно для гомолецитальных яиц. Плоскости дробления разделяют яйцо полностью. Они могут делить его на равные части, как у морской звезды или морского ежа, или же на неравные части, как у брюхоногого моллюска Crepidula. Дробление умеренно телолецитального яйца ланцетника происходит по голобластическому типу, однако неравномерность деления проявляется только после стадии четырех бластомеров. У некоторых клеток после этой стадии дробление становится крайне неравномерным; образующиеся при этом мелкие клетки называют микромерами, а крупные клетки, содержащие желток, - макромерами. У моллюсков плоскости дробления проходят таким образом, что начиная со стадии восьми клеток бластомеры располагаются по спирали; этот процесс регулируется ядром. Меробластическое дробление типично для телолецитальных яиц, богатых желтком; оно ограничено относительно небольшим участком у анимального полюса. Плоскости дробления не проходят через все яйцо и не захватывают желток, так что в результате деления на анимальном полюсе образуется небольшой диск клеток (бластодиск). Такое дробление, называемое также дискоидальным, свойственно пресмыкающимся и птицам. Поверхностное дробление типично для центролецитальных яиц. Ядро зиготы делится в центральном островке цитоплазмы, и получающиеся при этом клетки перемещаются на поверхность яйца, образуя поверхностный слой клеток вокруг лежащего в центре желтка. Этот тип дробления наблюдается у членистоногих.
Правила дробления. Установлено, что дробление подчиняется определенным правилам, названным именами исследователей, которые их впервые сформулировали. Правило Пфлюгера: веретено всегда тянется в направлении наименьшего сопротивления. Правило Бальфура: скорость голобластического дробления обратно пропорциональна количеству желтка (желток затрудняет деление как ядра, так и цитоплазмы). Правило Сакса: клетки обычно делятся на равные части, и плоскость каждого нового деления пересекает плоскость предшествующего деления под прямым углом. Правило Гертвига: ядро и веретено обычно располагаются в центре активной протоплазмы. Ось каждого веретена деления располагается по длинной оси массы протоплазмы. Плоскости деления обычно пересекают массу протоплазмы под прямым углом к ее осям. В результате дробления оплодотворенных яиц любого типа образуются клетки, называемые бластомерами. Когда бластомеров становится много (у земноводных, например, от 16 до 64 клеток), они образуют структуру, напоминающую ягоду малины и названную морулой.



А - Стадия двух бластомеров. Б - Стадия четырех бластомеров. В - Морула, состоящая примерно из 16 бластомеров (возраст зародыша ок. 84 часов). Г - Бластула; более светлая центральная область свидетельствует о формировании бластоцеля (возраст зародыша ок. 100 часов). 1 - Полярные тельца.
Бластула. По мере продолжения дробления бластомеры становятся все мельче и все плотнее прилегают друг к другу, приобретая гексагональную форму. Такая форма повышает структурную жесткость клеток и плотность слоя. Продолжая делиться, клетки раздвигают друг друга и в итоге, когда их число достигает нескольких сотен или тысяч, формируют замкнутую полость - бластоцель, в который поступает жидкость из окружающих клеток. В целом это образование носит название бластулы. Ее формированием (в котором клеточные движения не участвуют) завершается период дробления яйца. В гомолецитальных яйцах бластоцель может располагаться в центре, но в телолецитальных яйцах он обычно бывает сдвинут желтком и располагается эксцентрически, ближе к анимальному полюсу и прямо под бластодиском. Итак, бластула обычно представляет собой полый шарик, полость которого (бластоцель) заполнена жидкостью, но в телолецитальных яйцах с дискоидальным дроблением бластула представлена уплощенной структурой. При голобластическом дроблении стадия бластулы считается завершенной, когда в результате деления клеток соотношение между объемами их цитоплазмы и ядра становится таким же, как в соматических клетках. В оплодотворенном яйце объемы желтка и цитоплазмы совершенно не соответствуют размерам ядра. Однако в процессе дробления количество ядерного материала несколько увеличивается, тогда как цитоплазма и желток только делятся. В некоторых яйцах отношение объема ядра к объему цитоплазмы в момент оплодотворения составляет примерно 1:400, а к концу стадии бластулы - примерно 1:7. Последнее близко к соотношению, характерному и для первичной половой и для соматической клетки. Поверхности поздней бластулы оболочников и земноводных можно картировать; для этого на разные ее участки наносят прижизненные (не наносящие вреда клеткам) красители - сделанные цветные метки сохраняются в ходе дальнейшего развития и позволяют установить, какие органы возникают из каждого участка. Эти участки называют презумптивными, т.е. такими, судьбу которых при нормальных условиях развития можно предсказать. Если, однако, на стадии поздней бластулы или ранней гаструлы переместить эти участки или поменять местами, их судьба изменится. Подобные эксперименты показывают, что до какой-то определенной стадии развития каждый бластомер способен превратиться в любую из множества разнообразных клеток, составляющих организм.



Гаструла. Гаструлой называют стадию эмбрионального развития, на которой зародыш состоит из двух слоев: наружного - эктодермы, и внутреннего - энтодермы. У разных животных эта двуслойная стадия достигается разными способами, поскольку яйца разных видов содержат разное количество желтка. Однако в любом случае главную роль в этом играют перемещения клеток, а не клеточные деления.
Инвагинация. В гомолецитальных яйцах, для которых типично голобластическое дробление, гаструляция обычно происходит путем инвагинации (впячивания) клеток вегетативного полюса, что приводит к образованию двуслойного зародыша, имеющего форму чаши. Первоначальный бластоцель сокращается, но при этом образуется новая полость - гастроцель. Отверстие, ведущее в этот новый гастроцель, называется бластопором (название неудачное, поскольку оно открывается не в бластоцель, а в гастроцель). Бластопор расположен в области будущего анального отверстия, на заднем конце зародыша, и в этой области развивается большая часть мезодермы - третьего, или среднего, зародышевого листка. Гастроцель называют также архентероном, или первичной кишкой, и он служит зачатком пищеварительной системы.
Инволюция. У пресмыкающихся и птиц, телолецитальные яйца которых содержат большое количество желтка и дробятся меробластически, клетки бластулы на очень небольшом участке приподнимаются над желтком и затем начинают вворачиваться внутрь, под клетки верхнего слоя, образуя второй (нижний) слой. Этот процесс вворачивания клеточного пласта называют инволюцией. Верхний слой клеток становится наружным зародышевым листком, или эктодермой, а нижний - внутренним, или энтодермой. Эти слои переходят один в другой, а место, где происходит переход, известно под названием губы бластопора. Крыша первичной кишки у зародышей этих животных состоит из вполне сформировавшихся энтодермальных клеток, а дно - из желтка; дно из клеток образуется позднее.
Деламинация. У высших млекопитающих, в том числе у человека, гаструляция происходит несколько иначе, а именно путем деламинации, но приводит к тому же результату - образованию двуслойного зародыша. Деламинация - это расслоение исходного наружного слоя клеток, приводящее к возникновению внутреннего слоя клеток, т.е. энтодермы.
Вспомогательные процессы. Существуют также дополнительные процессы, сопровождающие гаструляцию. Описанный выше простой процесс - исключение, а не правило. К вспомогательным процессам относятся эпиболия (обрастание), т.е. перемещение клеточных слоев по поверхности вегетативного полушария яйца, и конкресценция --объединение клеток на обширных участках. Один из этих процессов или они оба могут сопровождать как инвагинацию, так и инволюцию.
Результаты гаструляции. Конечный результат гаструляции заключается в образовании двуслойного зародыша. Наружный слой зародыша (эктодерма) образован мелкими, часто - пигментированными клетками, не содержащими желтка; из эктодермы в дальнейшем развиваются такие ткани, как, например, нервная, и верхние слои кожи. Внутренний слой (энтодерма) состоит из почти не пигментированных клеток, сохраняющих некоторое количество желтка; они дают начало главным образом тканям, выстилающим пищеварительный тракт и его производные. Следует, однако, подчеркнуть, что глубоких различий между этими двумя зародышевыми листками не существует. Эктодерма дает начало энтодерме, и если у некоторых форм границу между ними в области губы бластопора можно определить, то у других она практически неразличима. В экспериментах по трансплантации было показано, что различие между этими тканями определяется только их местоположением. Если участки, которые в норме оставались бы эктодермальными и дали бы начало производным кожи, пересадить на губу бластопора, они вворачиваются внутрь и становятся энтодермой, которая может превратиться в выстилку пищеварительного тракта, легкие или щитовидную железу. Часто с появлением первичной кишки центр тяжести зародыша смещается, он начинает поворачиваться в своих оболочках, и в нем впервые устанавливаются передне-задняя (голова - хвост) и дорсо-вентральная (спина - живот) оси симметрии будущего организма.
Зародышевые листки. Эктодерму, энтодерму и мезодерму различают на основании двух критериев. Во-первых, по их местоположению в зародыше на ранних стадиях его развития: в этот период эктодерма всегда расположена снаружи, энтодерма - внутри, а мезодерма, появляющаяся последней, - между ними. Во-вторых, по их будущей роли: каждый из этих листков дает начало определенным органам и тканям, и их нередко идентифицируют по их дальнейшей судьбе в процессе развития. Однако напомним, что в период возникновения этих листков никаких принципиальных различий между ними не существует. В опытах по пересадке зародышевых листков было показано, что первоначально каждый из них обладает потенциями любого из двух других. Таким образом, их разграничение искусственно, но им очень удобно пользоваться при изучении эмбрионального развития. Мезодерма, т.е. средний зародышевый листок, образуется несколькими способами. Она может возникать непосредственно из энтодермы путем образования целомических мешков, как у ланцетника; одновременно с энтодермой, как у лягушки; или путем деламинации, из эктодермы, как у некоторых млекопитающих. В любом случае вначале мезодерма представляет собой слой клеток, лежащих в пространстве, которое первоначально занимал бластоцель, т.е. между эктодермой с наружной и энтодермой с внутренней стороны. Мезодерма вскоре расщепляется на два клеточных слоя, между которыми образуется полость, называемая целомом. Из этой полости в последующем образуются полость перикарда, окружающая сердце, плевральная полость, окружающая легкие, и брюшная полость, в которой лежат органы пищеварения. Наружный слой мезодермы - соматическая мезодерма - образует вместе с эктодермой т.н. соматоплевру. Из наружной мезодермы развиваются поперечнополосатые мышцы туловища и конечностей, соединительная ткань и сосудистые элементы кожи. Внутренний слой мезодермальных клеток называется спланхнической мезодермой и вместе с энтодермой образует спланхноплевру. Из этого слоя мезодермы развиваются гладкие мышцы и сосудистые элементы пищеварительного тракта и его производных. В развивающемся зародыше много рыхлой мезенхимы (эмбриональной мезодермы), заполняющей пространство между эктодермой и энтодермой. У хордовых в процессе развития образуется продольный столбик плоских клеток - хорда, основной отличительный признак этого типа. Клетки хорды происходят из эктодермы у одних животных, из энтодермы у других и из мезодермы у третьих. В любом случае эти клетки уже на очень ранней стадии развития можно отличить от остальных, и расположены они в виде продольного столбика над первичной кишкой. У зародышей позвоночных хорда служит центральной осью, вокруг которой развивается осевой скелет, а над ней - центральная нервная система. У большинства хордовых это чисто эмбриональная структура, и только у ланцетника, круглоротых и пластиножаберных она сохраняется в течение всей жизни. Почти у всех других позвоночных клетки хорды замещаются костными клетками, образующими тело развивающихся позвонков; из этого следует, что наличие хорды облегчает формирование позвоночного столба.
Производные зародышевых листков. Дальнейшая судьба трех зародышевых листков различна. Из эктодермы развиваются: вся нервная ткань; наружные слои кожи и ее производные (волосы, ногти, зубная эмаль) и частично слизистая ротовой полости, полостей носа и анального отверстия. Энтодерма дает начало выстилке всего пищеварительного тракта - от ротовой полости до анального отверстия - и всем ее производным, т.е. тимусу, щитовидной железе, паращитовидным железам, трахее, легким, печени и поджелудочной железе. Из мезодермы образуются: все виды соединительной ткани, костная и хрящевая ткани, кровь и сосудистая система; все типы мышечной ткани; выделительная и репродуктивная системы, дермальный слой кожи. У взрослого животного очень мало таких органов энтодермального происхождения, которые не содержали бы нервных клеток, происходящих из эктодермы. В каждом важном органе содержатся и производные мезодермы - кровеносные сосуды, кровь, часто и мышцы, так что структурная обособленность зародышевых листков сохраняется только на стадии их образования. Уже в самом начале своего развития все органы приобретают сложное строение, и в них входят производные всех зародышевых листков.
ОБЩИЙ ПЛАН СТРОЕНИЯ ТЕЛА
Симметрия. На ранних стадиях развития организм приобретает определенный тип симметрии, характерный для данного вида. Один из представителей колониальных протистов, вольвокс, обладает центральной симметрией: любая плоскость, проходящая через центр вольвокса, делит его на две равноценные половины. Среди многоклеточных нет ни одного животного, обладающего симметрией такого типа. Для кишечнополостных и иглокожих характерна радиальная симметрия, т.е. части их тела расположены вокруг главной оси, образуя как бы цилиндр. Некоторые, но не все плоскости, проходящие через эту ось, делят такое животное на две равноценные половинки. Все иглокожие на личиночной стадии обладают двусторонней симметрией, но в процессе развития приобретают радиальную симметрию, характерную для взрослой стадии. Для всех высокоорганизованных животных типична двусторонняя симметрия, т.е. их можно разделить на две симметричные половины только в одной плоскости. Поскольку такое расположение органов наблюдается у большинства животных, его считают оптимальным для выживания. Плоскость, проходящая по продольной оси от вентральной (брюшной) к дорсальной (спинной) поверхности, делит животное на две половины, правую и левую, являющиеся зеркальными отображениями друг друга. Почти все неоплодотворенные яйца обладают радиальной симметрией, но некоторые теряют ее в момент оплодотворения. Например, в яйце лягушки место проникновения сперматозоида всегда сдвинуто к переднему, или головному, концу будущего зародыша. Эта симметрия определяется только одним фактором - градиентом распределения желтка в цитоплазме. Двусторонняя симметрия становится очевидной, как только в ходе эмбрионального развития начинается формирование органов. У высших животных практически все органы закладываются попарно. Это относится к глазам, ушам, ноздрям, легким, конечностям, большинству мышц, частей скелета, кровеносных сосудов и нервов. Даже сердце закладывается в виде парной структуры, а затем ее части сливаются, образуя один трубчатый орган, который впоследствии перекручивается, превращаясь в сердце взрослой особи с его сложной структурой. Неполное слияние правой и левой половинок органов проявляется, например, в случаях расщелины неба или заячьей губы, изредка встречающихся у человека.









Метамерия (расчленение тела на сходные сегменты). Наибольшего успеха в длительном процессе эволюции достигли животные с сегментированным телом. Метамерное строение кольчатых червей и членистоногих отчетливо видно на протяжении всей их жизни. У большинства позвоночных первоначально сегментированное строение в дальнейшем становится мало различимым, однако на эмбриональных стадиях метамерия у них ясно выражена. У ланцетника метамерия проявляется в строении целома, мышц и гонад. Для позвоночных характерно сегментарное расположение некоторых частей нервной, выделительной, сосудистой и опорной систем; однако уже на ранних стадиях эмбрионального развития на эту метамерию накладывается опережающее развитие переднего конца тела - т.н. цефализация. Если рассмотреть выращенного в инкубаторе 48-часового зародыша цыпленка, то можно выявить у него одновременно и двустороннюю симметрию и метамерию, наиболее отчетливо выраженную на переднем конце тела. Например, группы мышц, или сомиты, сначала появляются в области головы и образуются последовательно, так что наименее развитыми сегментированными сомитами оказываются задние.
Органогенез. У большинства животных одним из первых дифференцируется пищеварительный канал. В сущности, зародыши большинства животных представляют собой трубку, вставленную в другую трубку; внутренняя трубка - это кишка, от ротового до анального отверстия. Другие органы, входящие в систему пищеварения, и органы дыхания закладываются в виде выростов этой первичной кишки. Присутствие крыши архентерона, или первичной кишки, под дорсальной эктодермой вызывает (индуцирует), возможно совместно с хордой, образование на спинной стороне зародыша второй важнейшей системы организма, а именно центральной нервной системы. Это происходит следующим образом: сначала утолщается дорсальная эктодерма и образуется нервная пластинка; затем края нервной пластинки приподнимаются, образуя нервные валики, которые растут навстречу друг другу и в конечном счете смыкаются, - в результате возникает нервная трубка, зачаток центральной нервной системы. Из передней части нервной трубки развивается головной мозг, а остальная ее часть превращается в спинной мозг. Полость нервной трубки по мере разрастания нервной ткани почти исчезает - от нее остается лишь узкий центральный канал. Головной мозг формируется в результате выпячиваний, впячиваний, утолщений и утоньшений передней части нервной трубки зародыша. От образовавшегося головного и спинного мозга берут начало парные нервы - черепные, спинномозговые и симпатические. Мезодерма тоже претерпевает изменения сразу после своего возникновения. Она образует парные и метамерные сомиты (блоки мышц), позвонки, нефротомы (зачатки органов выделения) и части репродуктивной системы. Таким образом, развитие систем органов начинается сразу после образования зародышевых листков. Все процессы развития (при нормальных условиях) происходят с точностью самых совершенных технических устройств.
МЕТАБОЛИЗМ ЗАРОДЫШЕЙ
Зародышам, развивающимся в водной среде, не требуется иных покровов, кроме студнеобразных оболочек, покрывающих яйцо. Эти яйца содержат достаточное количество желтка, чтобы обеспечить зародыш питанием; оболочки до некоторой степени защищают его и помогают сохранять метаболическое тепло и вместе с тем достаточно проницаемы, чтобы не препятствовать свободному газообмену (т.е. поступлению кислорода и выходу диоксида углерода) между зародышем и средой.
Внезародышевые оболочки. У животных, откладывающих яйца на суше или живородящих, зародышу необходимы дополнительные оболочки, защищающие его от обезвоживания (если яйца откладываются на суше) и обеспечивающие питание, удаление конечных продуктов обмена и газообмен. Эти функции выполняют внезародышевые оболочки - амнион, хорион, желточный мешок и аллантоис, образующиеся в процессе развития у всех пресмыкающихся, птиц и млекопитающих. Хорион и амнион тесно связаны между собой по происхождению; они развиваются из соматической мезодермы и эктодермы. Хорион - самая наружная оболочка, окружающая зародыш и три другие оболочки; эта оболочка проницаема для газов и через нее происходит газообмен. Амнион предохраняет клетки зародыша от высыхания благодаря амниотической жидкости, секретируемой его клетками. Желточный мешок, наполненный желтком, вместе с желточным стебельком поставляет зародышу подвергшиеся перевариванию питательные вещества; эта оболочка содержит густую сеть кровеносных сосудов и клетки, вырабатывающие пищеварительные ферменты. Желточный мешок, как и аллантоис, образуется из спланхнической мезодермы и энтодермы: энтодерма и мезодерма распространяются по всей поверхности желтка, обрастая его, так что в конце концов весь желток оказывается в желточном мешке. У пресмыкающихся и птиц аллантоис служит резервуаром для конечных продуктов обмена, поступающих из почек зародыша, а также обеспечивает газообмен. У млекопитающих эти важные функции выполняет плацента - сложный орган, образуемый ворсинками хориона, которые, разрастаясь, входят в углубления (крипты) слизистой оболочки матки, где вступают в тесный контакт с ее кровеносными сосудами и железами. У человека плацента полностью обеспечивает дыхание зародыша, питание и выделение продуктов обмена в кровоток матери. Внезародышевые оболочки не сохраняются в постэмбриональном периоде. У пресмыкающихся и птиц при вылуплении высохшие оболочки остаются в скорлупе яйца. У млекопитающих плацента и остальные внезародышевые оболочки выбрасываются из матки (отторгаются) после рождения плода. Эти оболочки обеспечили высшим позвоночным независимость от водной среды и, несомненно, сыграли важную роль в эволюции позвоночных, особенно в возникновении млекопитающих.
БИОГЕНЕТИЧЕСКИЙ ЗАКОН
В 1828 К. фон Бэр сформулировал следующие положения: 1) наиболее общие признаки любой крупной группы животных появляются у зародыша раньше, чем менее общие признаки; 2) после формирования самых общих признаков появляются менее общие и так до появления особых признаков, свойственных данной группе; 3) зародыш любого вида животных по мере развития становится все менее похожим на зародышей других видов и не проходит через поздние стадии их развития; 4) зародыш высокоорганизованного вида может обладать сходством с зародышем более примитивного вида, но никогда не бывает похож на взрослую форму этого вида. Биогенетический закон, сформулированный в этих четырех положениях, часто истолковывают неверно. Закон этот просто утверждает, что некоторые стадии развития высокоорганизованных форм обладают явным сходством с некоторыми стадиями развития нижестоящих на эволюционной лестнице форм. Предполагается, что это сходство можно объяснить происхождением от общего предка. О взрослых стадиях низших форм ничего не говорится. В данной статье сходство между зародышевыми стадиями подразумевается; в противном случае развитие каждого вида пришлось бы описывать отдельно. По-видимому, в длительной истории жизни на Земле среда играла главную роль в отборе зародышей и взрослых организмов, наиболее приспособленных для выживания. Узкие рамки, создаваемые средой в отношении возможных колебаний температуры, влажности и снабжения кислородом, сокращали разнообразие форм, приводя их к относительно общему типу. В результате возникло то сходство строения, которое лежит в основе биогенетического закона, если речь идет о зародышевых стадиях. Разумеется, у ныне существующих форм в процессе зародышевого развития проявляются особенности, соответствующие времени, месту и способам размножения данного вида. Онтогенез, т.е. развитие отдельной особи, предваряет филогенез, т.е. развитие группы, потому что мутации обычно возникают в половых клетках до оплодотворения. Изменения в эмбрионе естественно предшествуют изменениям взрослой особи, имеющим эволюционное значение, а часто и вызывают их. Новая особь "закладывается" в момент оплодотворения, а зародышевое развитие только подготавливает его к превратностям взрослого существования и созданию будущих зародышей.
См. также
ЦИТОЛОГИЯ ;
НАСЛЕДСТВЕННОСТЬ ;
СИСТЕМАТИКА ЖИВОТНЫХ .
ЛИТЕРАТУРА
Карлсон Б. Основы эмбриологии по Пэттену, т. 1. М., 1983 Гилберт С. Биология развития, т. 1. М., 1993

Энциклопедия Кольера. - Открытое общество . 2000 .

Задания 1. Роль биологии в формировании современной естественнонаучной картины
мира, в практической деятельности людей
1. Какое биологическое исследование может провести женщина, изображённая на картине
Анри Матисса «Женщина перед аквариумом»?

1) определить физические свойства воды в аквариуме
2) сравнить состав воды в аквариуме с водой в реке
3) определить видовой состав обитателей аквариума
4) описать форму аквариума
Пояснение.
К биологическим исследованиям относится определение видового состава.
От в е т: 3.
2.. Как называют науку, изучающую закономерности исторического развития органическо­
го мира?
1) анатомия
2) эволюционное учение
3) генетика
4) экология
Пояснение.
Эволюционное учение - комплекс знаний об историческом развитии (эволюции) живой
природы.
Анатомия - раздел биологии и конкретно морфологии, изучающий строение тела организ­
мов и их частей на уровне выше клеточного.

окружающей средой.
От в е т: 2.
3. Кого считают создателем клеточной теории иммунитета?
1) Ч. Дарвина
2) И. П. Павлова
3) Л. Пастера
4) И. И. Мечникова
Пояснение.
Теория, согласно которой решающая роль в антибактериальном иммунитете принадлежит
фагоцитозу, принадлежит И. И. Мечникову.
От в е т: 4.
4. Система наиболее общих знаний в определённой области науки - это
1) факт
2) эксперимент

3) теория
4) гипотеза
Пояснение.
Теория (3) - учение, система идей или принципов. Является совокупностью обобщенных
положений, образующих науку или ее раздел. Теория выступает как форма синтетического
знания, в границах которой отдельные понятия, гипотезы и законы теряют прежнюю авто­
номность и становятся элементами целостной системы.
Гипотеза - предположение или догадка; утверждение, предполагающее доказательство, в
отличие от аксиом, постулатов, не требующих доказательств.
Эксперимент (от лат. experimentum - проба, опыт), метод познания, при помощи которого
в контролируемых и управляемых условиях исследуются явления действительности.
Наблюдаемый факт - это описание того, что можно наблюдать при некоторых условиях.
Условия проведения наблюдения - описание того, при каких условиях можно наблюдать
описанное в первой части утверждения.
От в е т: 3.
На рисунке изображён великий русский и советский естествоиспыта­
5.
тель, мыслитель и общественный деятель XX в., известный тем, что создал
1) учение о доминанте
2) клеточную теорию
3) учение о биосфере
4) теорию возникновения человека
Пояснение.
На портрете изображен В. И. Вернадский, создавший учение о биосфере и ноосфере.
От в е т: 3.
6. Сформулировать гипотезу - значит
1) собрать имеющиеся факты
2) выдвинуть предположение
3) подтвердить объективность полученных данных
4) провести эксперимент
Пояснение.
Гипотеза - это предположение или догадка; утверждение, предполагающее доказатель­
ство, в отличие от аксиом, постулатов, не требующих доказательств.
От в е т: 2.
7. Какая наука разрабатывает методы лечения болезней человека?
1) физиология
2) гигиена
3) анатомия
4) медицина
Пояснение.
Медицина - система научных знаний и практических мер, объединяемых целью распозна­
вания, лечения и предупреждения болезней, сохранения и укрепления здоровья и трудоспо­
собности людей, продления жизни.

Физиология - о закономерностях функционирования и регуляции биологических систем
разного уровня организации, о пределах нормы жизненных процессов и болезненных откло­
нений от неё.

Анатомия - раздел биологии, изучающий строение организма, его систем и органов. Пред­
метом изучения анатомии являются форма и строение, происхождение и развитие организ­
ма.
От в е т: 4.
8. Наука цитология получила своё развитие благодаря созданию
1) эволюционного учения
2) клеточной теории
3) рефлекторной теории
4) генной теории
Пояснение.
Цитология - раздел биологии, изучающий живые клетки, их органоиды, их строение,
функционирование, процессы клеточного размножения, старения и смерти.
Изучение клетки ускорилось в 1830­х годах, когда появились усовершенствованные микро­
скопы. В 1838-1839 ботаник Маттиас Шлейден и анатом Теодор Шванн практически од­
новременно выдвинули идею клеточного строения организма. Т. Шванн предложил термин
«клеточная теория» и представил эту теорию научному сообществу. Возникновение цито­
логии тесно связано с созданием клеточной теории - самого широкого и фундаментально­
го из всех биологических обобщений.
От в е т: 2.
На рисунке изображён великий английский естествоиспыта­
9.
тель и биолог середины XIX в., известный тем, что создал
1) рефлекторную теорию
2) теорию эволюции
3) клеточную теорию
4) теорию иммунитета
Пояснение.
На портрете Чарльз Дарвин (в молодости), выдвинувший теорию эволюции.
От в е т: 2.
10. Систематика - это наука, изучающая

1) функции организмов в природе
2) родственные связи организмов
3) образ жизни организмов

4) внешнее строение организмов
Пояснение.
Задачей систематики является описание и обозначение всех существующих и вымерших ор­
ганизмов, установление родственных отношений и связей между отдельными видами и
группами видов.

От в е т: 2.
11. Законы наследования признаков организма установил
1) И. П. Павлов
2) И. И. Мечников
3) Г. Мендель
4) Ч. Дарвин
Пояснение.
Г. Мендель - основоположник генетики;
И. П. Павлов - создатель науки о высшей нервной деятельности и представлений о про­
цессах регуляции пищеварения;
И. И. Мечников - фагоцитарная теория иммунитета;
Ч. Дарвин - эволюционная теория.
От в е т: 3.
12. Какая наука изучает процесс фотосинтеза?
1) генетика
2) физиология
3) экология
4) систематика
Пояснение.


От в е т: 2.
На рисунке изображён великий французский естествоиспытатель и
13.
биолог конца XVIII - начала XIX в., известный тем, что создал первую научную
1) хромосомную теорию
2) теорию эволюции живого мира
3) клеточную теорию
4) теорию иммунитета
Пояснение.
На портрете изображен Жан Батист Пьер Антуан де Моне Ламарк, известный тем, что стал
первым биологом, который попытался создать стройную и целостную теорию эволюции жи­
вого мира.
От в е т: 2.
14. Факт существования сезонной линьки у животных был установлен

1) методом микрокопирования
2) методом наблюдения
3) экспериментальным методом
4) гибридологическим методом
Пояснение.
Линька - смена покровов тела у животных - была установлена путем наблюдения. На­
блюдение - организованное, целенаправленное, фиксируемое восприятие явлений с целью
их изучения в определённых условиях.
От в е т: 2.
15. Точно установить степень влияния удобрений на рост растений можно методом
1) эксперимента
2) наблюдения
3) моделирования
4) анализа
Пояснение.
Экспериментальный метод позволяет активно изучать то или иное явление. Любой экспе­
римент (лат. experimentum - проверка, опыт) связан с наблюдением, однако эксперимент
и наблюдение не тождественны. В отличие от описания и сравнения, основу которых со­
ставляет наблюдение, эксперимент позволяет изучать не только то, что бросается в глаза и
сразу видно экспериментатору, но и то, что скрыто в глубине предмета, явления. Экспери­
мент позволяет изучать явления целенаправленно, в условиях, которые можно точно учи­
тывать качественно и количественно, а также воссоздавать заново.
Если нужно установить дозировку удобрений, влияние на рост и развитие растений - это
эксперимент.
От в е т: 1.
16. Каким методом воспользовался И. П. Павлов чтобы установить рефлекторную природу
выделения желудочного сока?
1) описание
2) наблюдение
3) эксперимент
4) моделирование
Пояснение.
Экспериментальный метод заключается в активном изучении того или иного явления.
Описательный метод является самым старым методом и основан на наблюдении организ­
мов. Он заключается в сборе фактического материала и описании его.
Наблюдение - целенаправленное изучение объектов или явлений (метод собирания ин­
формации)
Моделирование - исследование объектов познания на их моделях; построение и изучение
моделей реально существующих объектов, процессов или явлений с целью получения объ­
яснений этих явлений, а также для предсказания явлений, интересующих исследователя.

От в е т: 3.
17. Задание 1 № 641. Выдающийся русский физиолог, учёный­энциклопедист конца XIX в.
И. М. Сеченов известен тем, что объяснил
1) механизмы движения крови по малому и большому кругам кровообращения
2) природу образования условных и безусловных рефлексов у человека и животных
3) механизмы зрительного восприятия сетчаткой глаза
4) природу психических явлений, в основе которых лежат физиологические процес­
сы - рефлексы

Пояснение.
И. М. Сеченов в классическом труде «Рефлексы головного мозга» (1866) обосновал ре­
флекторную природу сознательной и бессознательной деятельности, показал, что в основе
психических явлений лежат физиологические процессы, которые могут быть изучены объ­
ективными методами. Открыл явления центрального торможения.
1. У. Гарвей - два круга кровообращения;
2. И. П. Павлов - природа образования условных рефлексов;
3. М. В. Ломоносов, впервые в монографии «о трех материях дна ока», сформулировал
трехсоставную теорию цветового зрения.
От в е т: 4.
18. Учёный предположил, что некоторые насекомые похожи на ветки растений, потому что
это сходство спасает их от хищников. С большей точностью он может подтвердить или
опровергнуть это предположение методом
1) измерения
2) описания
3) сравнения
4) эксперимента
Пояснение.
Метод эксперимента - метод активного воздействия на объект исследования. Экспери­
мент - помещая насекомых в разные условия (на разные ветки), можно подтвердить пред­
положение.
От в е т: 4.
19. Примером применения экспериментального метода исследования можно считать
1) сравнение двух микропрепаратов
2) измерение кровяного давления у пациента
3) формирование условного рефлекса на звонок
4) описание нового вида организмов
Пояснение.
Эксперимент - активное воздействие на объект изучения, значит, формирование условно­
го рефлекса на звонок.
От в е т: 3.
20. Закономерности передачи наследственных признаков изучает
1) генетика
2) антропология
3) экология
4) молекулярная биология
Пояснение.

От в е т: 1.

21. Какой уровень организации жизни отражён на данной фотографии?
1) молекулярно­генетический
2) органоидно­клеточный
3) биогеоценотический
4) популяционно­видовой
Пояснение.
На фотографии изображена стая фламинго. Популяционно­видовой уровень организации
жизни состоит из группы родственных особей, объединённых определённым генофондом и
специфическим взаимодействием с окружающей средой (популяций и видов).
От в е т: 4.
22.. Специальность учёного, занимающегося лечением домашних животных, называется
1) агроном
2) зоотехник
3) селекционер
4) ветеринар
Пояснение.
Ветеринар - специалист с высшим или средним специальным образованием, занимающий­
ся лечением животных (ветеринарией) и сопутствующими обязанностями.
От в е т: 4.
23. Какая наука изучает ископаемые остатки вымерших организмов?
1) палеонтология
2) генетика
3) эмбриология
4) систематика
Пояснение.



логической эволюции.
От в е т: 1.
24. Учёный хочет выяснить закономерности наследования цвета глаз у детей в нескольких
поколениях одной семьи. Каким методом исследования он воспользуется?
1) экспериментальным
2) генеалогическим
3) наблюдения
4) гибридологическим
Пояснение.

Генеалогический метод заключается в анализе родословных и позволяет определить тип
наследования (доминантный или рецессивный, аутосомный или сцепленный с полом) при­
знака, а также его моногенность или полигенность. На основе полученных сведений прогно­
зируют вероятность проявления изучаемого признака в потомстве.
От в е т: 2.
Какой уровень организации жизни отражён на данном
25.
рисунке?
1) молекулярно­генетический
2) органоидно­клеточный
3) организменный
4) биогеоценотический
Пояснение.
Биогеоценотический (экосистемный) уровень. Популяции разных видов всегда образуют в
биосфере Земли сложные сообщества - биоценозы. Биоценоз - совокупность растений,
животных, грибов и прокариот, населяющих участок суши или водоема и находящихся в
определенных отношениях между собой.
От в е т: 4.
26. Каким методом воспользуется учёный­ботаник при установлении родства между расте­
ниями рожь посевная (1) и кукуруза сахарная (2)?
1) абстрагирования
2) сравнения
3) моделирования
4) экспериментальным
Пояснение.
Наука систематика пользуется методом сравнения.
От в е т: 2.
27. Какой термин в переводе с греческого означает «знание о душе»?
1) анатомия
2) физиология
3) гигиена

4) психология
Пояснение.
Психология (др.­греч.
ние) - наука, изучающая недоступные
для внешнего наблюдения структуры и процессы, с целью объяснения поведения человека
и животных, а также психологических особенностей отдельных людей либо их групп.
От в е т: 4.
- душа;
ψυχή
λόγος
- зна
Какой уровень организации жизни отражён на гравюре И.
28.
Шишкина «Ручей в лесу»?
1) биогеоценотический
2) популяционно­видовой
3) биосферный
4) органоидно­клеточный
Пояснение.
Так как на гравюре изображен элемент биогеоценоза (разнообразие видов растений и уча­
сток рельефа), то это биогеоценотический.
От в е т: 1.
29. Создание схем, чертежей, объектов, похожих на натуральные, относят к группе мето­
дов
1) моделирования
2) измерения
3) наблюдения
4) экспериментальных
Пояснение.
Метод моделирования - исследование каких­либо явлений, процессов или систем объек­
тов путем построения и изучения моделей их функционирования. Образная модель может
переходить в знаковую, т. е. математическую.
От в е т: 1.
30. Какая практическая наука разрабатывает методы сохранения и улучшения здоровья че­
ловека?
1) анатомия
2) антропология
3) ветеринария
4) гигиена
Пояснение.
Гигиена - наука, изучающая влияние факторов внешней среды на организм человека с
целью оптимизации благоприятного и профилактики неблагоприятного воздействия.
От в е т: 4.

31. Специальность учёного, изучающего строение и функции клеток, называется
1) цитолог
2) эмбриолог
3) анатом
4) селекционер
Пояснение.
Цитолог - специалист в области цитологии, изучающий живые клетки, их органоиды, их
строение, функционирование, процессы клеточного размножения, старения и смерти.
От в е т: 1.
32. При разведении растений на приусадебном участке Вы, скорее всего, воспользуетесь
знаниями, полученными из области
1) медицины
2) эволюционного учения
3) агротехники
4) молекулярной биологии
Пояснение.
Агротехника - технология земледелия, система приёмов возделывания сельскохозяй­
ственных культур.
От в е т: 3.
33. Какой прибор позволяет определить содержание сахара в крови у человека?
1) динамометр
2) спирометр
3) фонендоскоп
4) глюкометр
Пояснение.
Глюкометр - прибор для измерения уровня глюкозы в органических жидкостях (кровь и
т. п.).
Динамометр - прибор для измерения силы или момента силы.
Спирометр - медицинский прибор для измерения объёма воздуха, поступающего из
лёгких при наибольшем выдохе после наибольшего вдоха.
Фонендоскоп - медицинский прибор, применяемый для выслушивания тонов сердца, ды­
хательных шумов и др. звуков, возникающих в организме.

От в е т: 4.
34. Какой уровень организации живого служит основным объектом изучения цитологии?
1) биогеоценотический
2) популяционно­видовой
3) клеточный
4) биосферный
Пояснение.
Клетка - структурная и функциональная единица, а также единица развития всех живых
организмов, обитающих на Земле, а цитология - раздел биологии, изучающий живые клет­
ки, их органоиды, их строение, функционирование, процессы клеточного размножения, ста­
рения и смерти.
От в е т: 3.

35.
Применение какого научного мето­
да иллюстрирует сюжет картины голландского художника Я. Стена «Пульс», написанной в
середине XVII в.?
1) моделирование
2) измерение
3) эксперимент
4) наблюдение
Пояснение.
Он измеряет пульс.

От в е т: 2.
36. Задание 1 № 1350. Что из приведённого можно изучать с помощью палеонтологических
методов?

1) половое поведение земноводных
2) эволюцию млекопитающих
3) тонкую структуру органоидов клетки
4) зависимость скорости реакции от температуры
Пояснение.
1 - изучают с помощью наблюдения и описания;
3 - микроскопия;
4 - эксперимент.
2 - Палеонтологические методы: выявление ископаемых промежуточных форм, восста­

От в е т: 2.
37. Что из приведённого можно изучать с помощью наблюдения?
1) зависимость скорости реакции от температуры
2) тонкую структуру органоидов клетки
3) половое поведение земноводных
4) эволюцию млекопитающих
Пояснение.
1 - эксперимент
2 - микроскопия;
3 - изучают с помощью наблюдения и описания;
4 - палеонтологические методы: выявление ископаемых промежуточных форм, восста­
новление филогенетических рядов и обнаружение последовательности ископаемых форм.

От в е т: 3.
38. Что из перечисленного изучает наука «физиология»?
1) строение клеток насекомых
2) систематику покрытосеменных растений
3) процессы внутриклеточного дыхания рыб
4) строение задних конечностей лягушек
Пояснение.
Физиология - наука, изучающая жизнедеятельность организма на различных уровнях орга­
низации (целого организма, его отдельных систем, отдельных органов и тканей, отдельных
клеток) и регуляцию его физиологических функций.
От в е т: 3
1 - цитология; 2 - систематика (классификация, таксономия) изучает многообразие
живых организмов и распределяет их по группам на основании эволюционного родства; 4
- анатомия.
39. Что из перечисленного изучает наука «цитология»?
1) систематику хордовых животных
2) строение клеток растений
3) химические реакции дыхания
4) морфологию передних конечностей животных
Пояснение.
Цитология - изучает строение и работу органоидов клетки.
40. Какой метод Вы бы использовали для изучения поведения пчёл?
1) микроскопия
2) гибридизация
3) вскрытие
4) наблюдение
Пояснение.
Метод наблюдения - это способ исследования в биологии, при котором анализируются и
описываются биологические явления. Метод наблюдения лежит в основе описательного
метода.

1 - изучение с помощью микроскопа; 2 - метод скрещивания и получения гибридов; 3 -
основной метод анатомии.
41. Задание 1 № 1510. Какой метод Вы бы использовали для изучения строения клетки
растений?

1) гибридизация
2) вскрытие
3) микроскопия
4) эксперимент
Пояснение.
Один из основных методов, который используют в цитологии, - это метод световой мик­
роскопии - рассматривание под микроскопом.
42. Закономерности передачи наследственных признаков изучает
1) генетика
2) систематика
3) антропология
4) биохимия
Пояснение.

Генетика - наука о закономерностях наследственности и изменчивости.
Систематика (классификация, таксономия) изучает многообразие живых организмов и рас­
пределяет их по группам на основании эволюционного родства.

(искусственной) средах.
Биохимия - наука о химическом составе живых клеток и организмов и о химических про­
цессах, лежащих в основе их жизнедеятельности.
Это портрет члена Лондонского королевского общества, кото­
43.
рый первым увидел и описал микробов. Кто это?
1) Дж. Пристли
2) У. Гарвей
3) А. Везалий
4) А. Левенгук
Пояснение.
На портрете изображен Антони ван Левенгук - нидерландский натуралист, один из осно­
воположников научной микроскопии. Изготовив линзы с 150­300­кратным увеличением,
впервые наблюдал и зарисовал (публикации с 1673) ряд простейших, сперматозоиды, бак­
терии, эритроциты и их движение в капиллярах.
44. Какая из перечисленных наук не относится к биологическим?
1) палеонтология
2) этимология
3) физиология
4) генетика
Пояснение.
Этимология - раздел лингвистики (конкретнее сравнительно­исторического языкознания),
изучающий происхождение слов.
45. Какая из перечисленных наук не относится к биологическим?
1) антропология
2) зоология
3) криптология
4) ботаника
Пояснение.
Криптология - наука, занимающаяся методами шифрования и дешифрования.
46. Какая из перечисленных наук не относится к биологическим?
1) антропология
2) зоология
3) криптология
4) ботаника

Пояснение.
Ответ: Криптология - наука, занимающаяся методами шифрования и дешифрования.
От в е т: 3
Антропология - совокупность научных дисциплин, занимающихся изучением человека,
его происхождения, развития, существования в природной (естественной) и культурной
(искусственной) средах.
Зоология - наука, изучающая представителей царства животных.
Ботаника - наука, о растениях.
47. Какая из перечисленных ниже наук изучает строение клеток печени человека?
1) генетика
2) эмбриология
3) цитология
4) физиология
Пояснение.
Строение клеток печени человека изучает - цитология.

Генетика - наука о наследственности и изменчивости.

его физиологических систем.
48. Какая из перечисленных ниже наук изучает строение зародыша человека?
1) цитология
2) генетика
3) физиология
4) эмбриология
Пояснение.
Строение зародыша человека изучет - эмбриология.

Цитология - наука о строении, функциях и развитии клеток животных и растений, а
также одноклеточных организмов и бактерий.
Генетика - наука о наследственности и изменчивости.
Эмбриология - наука, изучающая развитие зародыша.
Физиология - наука, изучающая процессы жизнедеятельности организма, составляющих
его физиологических систем.
49. Задание 1 № 1927. Каким методом воспользовался И.П. Павлов, чтобы установить ре­
флекторную природу выделения желудочного сока?

1) наблюдение
2) моделирование
3) эксперимент
4) описание
Пояснение.
Чтобы установить рефлекторную природу выделения желудочного сока И.П. Павлов ис­
пользовал ­ эксперимент.
В научном методе - метод исследования некоторого явления в управляемых условиях.
Отличается от наблюдения активным взаимодействием с изучаемым объектом. Обычно
эксперимент проводится в рамках научного исследования и служит для проверки гипотезы

50. На рисунке изображён фрагмент энцефалограммы человека. Расшифровать её позволят
знания в области

1) анатомии
2) физиологии
3) генетики
4) гигиены
Пояснение.
Расшифровать её позволят знания в области физиологии. Т.к. физиология это наука о "ра­
боте" органа.
Физиология изучает основное качество живого - его жизнедеятельность, составляющие её
функции и свойства, как в отношении всего организма, так и в отношении его частей.
51. Какая наука изучает строение и распространение древних папоротниковидных?
1) селекция
2) экология
3) физиология
4) палеонтология
Пояснение.
Палеонтология - наука об ископаемых останках растений и животных, пытающаяся ре­
конструировать по найденным останкам их внешний вид, биологические особенности, спо­
собы питания, размножения и т. д., а также восстановить на основе этих сведений ход био­
логической эволюции.
52. Какая наука изучает взаимоотношения живых организмов и среды их обитания?
1) фенология
2) физиология
3) систематика
4) экология
Пояснение.
Экология - наука о взаимодействиях живых организмов и их сообществ между собой и с
окружающей средой.

Физиология представляет собой комплекс естественнонаучных дисциплин, изучающих как
жизнедеятельность целостного организма, так и отдельных физиологических систем и про­
цессов, органов, клеток, клеточных структур.
Систематика (классификация, таксономия) изучает многообразие живых организмов и
распределяет их по группам на основании эволюционного родства.
Фенология - раздел биологии, изучающий периодические явления в развитии живой при­
роды и их связь со сменой времён года и метеорологическими условиями.

Какой метод исследования применяет девушка, изоб­
53.
ражённая на картинке?
1) эксперимент
2) наблюдение
3) сравнение
4) анализ
Пояснение.
Наблюдение (2) - организованное, целенаправленное, фиксируемое восприятие явлений с
целью их изучения в определённых условиях.
54. Каким методом воспользуется учёный­зоолог при установлении родства между озёрной
лягушкой (1) и зелёной жабой (2)?

1) абстрагирования
2) экспериментальным
3) моделирования
4) сравнения
Пояснение.
Сравнительный – позволяет изучать путём сравнения сходства и различия живых организ­
мов, а также их частей. Полученные данные дают возможность объединять в группы расте­
ния и животные. Этот метод использовался при создании клеточной теории, систематики и
для подтверждения теории эволюции. В настоящее время он применяется практически во
всех направлениях данной науки.