Гравитационные волны — открыты! Что такое гравитационная волна? Список литературы по теме гравитационные волны эйнштейна

Вчера мир потрясла сенсация: ученые наконец-то обнаружили гравитационные волны, существование которых предсказывал Эйнштейн еще сто лет назад. Это прорыв. Искажение пространства-времени (это и есть гравитационные волны - сейчас объясним, что к чему) обнаружили в обсерватории ЛИГО, а одним из ее основателей является - кто бы вы думали? - Кип Торн, автор книги .

Рассказываем, почему открытие гравитационных волн так важно, что сказал Марк Цукерберг и, конечно, делимся историей от первого лица. Кип Торн как никто другой знает, как устроен проект, в чем его необычность и какое значение ЛИГО имеет для человечества. Да-да, все так серьезно.

Открытие гравитационных волн

Научный мир навсегда запомнит дату 11 февраля 2016. В этот день участники проекта ЛИГО (LIGO) объявили: после стольких тщетных попыток гравитационные волны найдены. Это реальность. На самом деле их обнаружили немного раньше: в сентябре 2015 года, но вчера открытие было признано официально. В The Guardian считают, что ученые непременно получат Нобелевскую премию по физике.

Причина гравитационных волн - столкновение двух черных дыр, которое произошло аж… в миллиарде световых лет от Земли. Представляете, насколько огромна наша Вселенная! Так как черные дыры - очень массивные тела, они пускают «рябь» по пространству-времени, немного его искажая. Вот и появляются волны, похожие на те, которые распространяются от камня, брошенного в воду.

Вот так можно представить гравитационные волны, идущие к Земле, например, от червоточины. Рисунок из книги «Интерстеллар. Наука за кадром»

Полученные колебания преобразовали в звук. Интересно, что сигнал от гравитационных волн приходит примерно на той же частоте, что и наша речь. Так что мы можем своими ушами услышать, как сталкиваются черные дыры. Послушайте, как звучат гравитационные волны .

И знаете что? Совсем недавно , что черные дыры устроены не так, как считалось раньше. Но ведь доказательств того, что они в принципе существуют, не было вовсе. А теперь есть. Черные дыры действительно «живут» во Вселенной.

Так, по мнению ученых, выглядит катастрофа – слияние черных дыр, — .

11 февраля состоялась грандиозная конференция, куда съехались больше тысячи ученых из 15 стран. Российские ученые тоже присутствовали. И, конечно, не обошлось без Кипа Торна. «Это открытие - начало изумительного, великолепного квеста для людей: поиска и исследования искривленной стороны Вселенной - объектов и явлений, созданных из искаженного пространства-времени. Столкновение черных дыр и гравитационные волны - наши первые замечательные образцы», - сказал Кип Торн.

Поиск гравитационных волн был одной из главных проблем физики. Теперь они найдены. И гений Эйнштейна подтвержден вновь.

В октябре мы взяли интервью у Сергея Попова, отечественного астрофизика и известного популяризатора науки. Он как в воду глядел! Осенью : «Мне кажется, что сейчас мы стоим на пороге новых открытий, что в первую очередь связано с работой детекторов гравитационных волн LIGO и VIRGO (Кип Торн как раз внес большой вклад в создание проекта LIGO)». Удивительно, правда?

Гравитационные волны, детекторы волн и LIGO

Что ж, а теперь немного физики. Для тех, кто действительно хочется разобраться в том, что такое гравитационные волны. Вот художественное изображение тендекс-линий двух черных дыр, которые вращаются по орбитам друг вокруг друга, против часовой стрелки, и затем сталкиваются. Тендекс-линии порождают приливную гравитацию. Идем дальше. Линии, которые исходят из двух наиболее удаленных друг от друга точек на поверхностях пары черных дыр, растягивают все на своем пути, включая попавшую на рисунок подругу художницы. Линии же, исходящие из области столкновения, все сжимают.

Когда дыры вращаются одна вокруг другой, они увлекают следом свои тендекс-линии, которые походят на струи воды из крутящейся поливалки на газоне. На рисунке из книги «Интерстеллар. Наука за кадром» - пара черных дыр, которые сталкиваются, вращаясь одна вокруг другой против часовой стрелки, и их тендекс-линии.

Черные дыры объединяются в одну большую дыру; она деформирована и вращается против часовой стрелки, увлекая за собой тендекс-линии. Неподвижный наблюдатель, находящийся вдали от дыры, почувствует колебания, когда через него будут проходить тендекс-линии: растяжение, затем сжатие, затем растяжение - тендекс-линии стали гравитационной волной. По мере распространения волн деформация черной дыры постепенно уменьшается, и волны также ослабевают.

Когда эти волны достигают Земли, они имеют вид, показанный в верхней части рисунка ниже. Они растягивают в одном направлении и сжимают в другом. Растяжения и сжатия колеблются (от красного вправо-влево, к синему вправо-влево, к красному вправо-влево и т. д.) по мере того, как волны проходят через детектор в нижней части рисунка.

Гравитационные волны, проходящие через детектор ЛИГО.

Детектор представляет собой четыре больших зеркала (40 килограммов, 34 сантиметра в диаметре), которые закреплены на концах двух перпендикулярных труб, называемых плечами детектора. Тендекс-линии гравитационных волн растягивают одно плечо, сжимая при этом второе, а затем, наоборот, сжимают первое и растягивают второе. И так снова и снова. При периодическом изменении длины плеч зеркала смещаются друг относительно друга, и эти смещения отслеживаются с помощью лазерных лучей способом, который называется интерферометрией. Отсюда и название ЛИГО: Лазерно-интерферометрическая гравитационноволновая обсерватория.

Центр управления ЛИГО, откуда отправляют команды детектору и следят за полученными сигналами. Гравитационные детекторы ЛИГО расположены в Хэнфорде, штат Вашингтон, и Ливингстоне, штат Луизиана. Фото из книги «Интерстеллар. Наука за кадром»

Сейчас ЛИГО - интернациональный проект, в котором участвует 900 ученых из разных стран, со штабом, расположенным в Калифорнийском технологическом институте.

Искривленная сторона Вселенной

Черные дыры, червоточины, сингулярности, гравитационные аномалии и измерения высшего порядка связаны с искривлениями пространства и времени. Поэтому Кип Торн называет их «искривленной стороной Вселенной». У человечества до сих пор очень мало экспериментальных и наблюдательных данных с искривленной стороны Вселенной. Вот почему мы столько внимания отдаем гравитационным волнам: они состоят из искривленного пространства и предоставляют наиболее доступный для нас способ исследовать искривленную сторону.

Представьте, что вам приходилось видеть океан, только когда он спокоен. Вы бы знать не знали о течениях, водоворотах и штормовых волнах. Это напоминает наши сегодняшние знания об искривлении пространства и времени.

Мы почти ничего не знаем о том, как искривленное пространство и искривленное время ведут себя «в шторм» - когда форма пространства бурно колеблется и когда колеблется скорость течения времени. Это необыкновенно манящий рубеж знаний. Ученый Джон Уилер придумал для этих изменений термин «геометродинамика»

Особый интерес в области геометродинамики представляет столкновение двух черных дыр.

Столкновение двух невращающихся черных дыр. Модель из книги «Интерстеллар. Наука за кадром»

На рисунке выше изображен момент столкновения двух черных дыр. Как раз такое событие позволило ученым зафиксировать гравитационные волны. Эта модель построена для невращающихся черных дыр. Сверху: орбиты и тени дыр, вид из нашей Вселенной. Посередине: искривленное пространство и время, вид из балка (многомерного гиперпространства); стрелками показано, как пространство вовлекается в движение, а изменяющимися цветами - как искривляется время. Снизу: форма испускаемых гравитационных волн.

Гравитационные волны от Большого взрыва

Слово Кипу Торну. «В 1975 году Леонид Грищук, мой добрый приятель из России, сделал сенсационное заявление. Он сказал, что в момент Большого взрыва возникло множество гравитационных волн, причем механизм их возникновения (прежде неизвестный) был таков: квантовые флуктуации (случайные колебания - прим. ред) гравитационного поля при Большом взрыве были многократно усилены первоначальным расширением Вселенной и так стали изначальными гравитационными волнами. Эти волны, если их удастся обнаружить, могут рассказать нам, что происходило в момент зарождения нашей Вселенной».

Если ученые найдут первоначальные гравитационные волны, мы узнаем, как зародилась Вселенная.

Люди разгадали далеко на все загадки Вселенной. Все еще впереди.

В последующие годы, по мере того как совершенствовались наши представления о Большом взрыве, стало очевидно: эти изначальные волны должны быть сильными на длинах волн, соизмеримых с величиной видимой Вселенной, то есть на длинах в миллиарды световых лет. Представляете, сколько это?.. А на длинах волн, которые охватывают детекторы ЛИГО (сотни и тысячи километров), волны, скорее всего, окажутся слишком слабыми, чтобы их распознать.

Команда Джейми Бока построила аппарат BICEP2 , с помощью которого был обнаружен след изначальных гравитационных волн. Аппарат, находящийся на Северном полюсе, показан здесь во время сумерек, которые бывают там лишь дважды в год.

Аппарат BICEP2 . Изображение из книги «Интерстеллар. Наука за кадром»

Он окружен щитами, экранирующими аппарат от излучения окружающего ледяного покрова. В правом верхнем углу показан обнаруженный в реликтовом излучении след - поляризационный узор. Линии электрического поля направлены вдоль коротких светлых штрихов.

След начала Вселенной

В начале девяностых космологи поняли, что эти гравитационные волны длиной в миллиарды световых лет должны были оставить уникальный след в электромагнитных волнах, наполняющих Вселенную, - в так называемом космическом микроволновом фоне, или реликтовом излучении. Это положило начало поискам святого Грааля. Ведь если обнаружить этот след и вывести из него свойства изначальных гравитационных волн, можно узнать, как зарождалась Вселенная.

В марте 2014 года, когда Кип Торн писал эту книгу, команда Джеми Бока, космолога из Калтеха, кабинет которого находится рядом с кабинетом Торна, наконец обнаружила этот след в реликтовом излучении.

Это совершенно потрясающее открытие, но есть один спорный момент: след, найденный командой Джеми, мог быть вызван не гравитационными волнами, а чем-то еще.

Если действительно найден след гравитационных волн, возникших при Большом взрыве, значит, произошло космологическое открытие такого уровня, какие случаются, быть может, раз в полвека. Оно дает шанс прикоснуться к событиям, которые происходили спустя триллионную от триллионной от триллионной доли секунды после рождения Вселенной.

Это открытие подтверждает теории, гласящие, что расширение Вселенной в тот миг было чрезвычайно быстрым, на сленге космологов - инфляционно быстрым. И возвещает наступление новой эры в космологии.

Гравитационные волны и «Интерстеллар»

Вчера на конференции по поводу открытия гравитационных волн Валерий Митрофанов, руководитель московской коллаборации ученых LIGO, в которую входят 8 ученых из МГУ, отметил, что сюжет фильма «Интерстеллар» хоть и фантастичен, но не так далек от действительности. А все потому, что научным консультантом был Кип Торн. Сам же Торн выразил надежду, что верит в будущие пилотируемые полеты человека к черной дыре. Пусть они случатся не так скоро, как хотелось бы, и все же сегодня это намного реальнее, чем было раньше.

Не так уж и далек день, когда люди покинут пределы нашей галактики.

Событие всколыхнуло умы миллионов людей. Небезызвестный Марк Цукерберг написал: «Обнаружение гравитационных волн - самое большое открытие в современной науке. Альберт Эйнштейн - один из моих героев, поэтому я воспринял открытие так близко. Столетие назад в рамках Общей Теории Относительности (ОТО) он предсказал существование гравитационных волн. А ведь они так малы, чтобы их обнаружить, что пришло искать их в истоках таких событий, как Большой взрыв, взрывы звезд и столкновения черных дыр. Когда ученые проанализируют полученные данные, перед нами откроется совершенной новый взгляд на космос. И, возможно, это прольет свет на происхождение Вселенной, рождение и процесс развития черных дыр. Это очень вдохновляет - думать о том, сколько жизней и усилий было положено на то, чтобы сорвать покров с этой тайны Вселенной. Этот прорыв стал возможным благодаря таланту блистательных ученых и инженеров, людей разных национальностей, а также новейшим компьютерным технологиям, которые появились только недавно. Поздравляю всех причастных. Эйнштейн бы вами гордился».

Такая вот речь. И это человек, который просто интересуется наукой. Можно себе представить, какая буря эмоций захлестнула ученых, которые внесли свою лепту в открытие. Кажется, мы стали свидетелями новой эры, друзья. Это поразительно.

P.S.: Понравилось? Подписывайтесь на нашу рассылку по кругозору . Раз в неделю присылаем познавательные письма и дарим скидки на книги МИФа.

11 февраля 2016-го года международная группа ученых, в том числе из России, на пресс-конференции в Вашингтоне объявила об открытии, которое рано или поздно изменит развитие цивилизации. Удалось на практике доказать гравитационные волны или волны пространства-времени. Их существование предсказал еще 100 лет назад Альберт Эйнштейн в своей .

Никто не сомневается, что это открытие будет удостоено Нобелевской премии. Учёные не торопятся говорить о его практическом применении. Но напоминают, что еще совсем недавно человечество точно также не знало, что делать с электромагнитными волнами, которые в итоге привели к настоящей научно-технической революции.

Что такое гравитационные волны простым языком

Гравитация и всемирное тяготение – это одно и то же. Гравитационные волны являются одним из решений ОТС. Распространяться они должны со скоростью света. Излучает его любое тело, движущееся с переменным ускорением.

Например, вращается по своей орбите с переменным ускорением, направленным к звезде. И это ускорение постоянно изменяется. Солнечная система излучает энергию порядка нескольких киловатт в гравитационных волнах. Это ничтожная величина, сравнимая с 3 старыми цветными телевизорами.

Другое дело – два вращающихся вокруг друг друга пульсара (нейтронных звезды). Они вращаются по очень тесным орбитам. Такая «парочка» была обнаружена астрофизиками и наблюдалась долгое время. Объекты готовы были друг на друга упасть, что косвенно свидетельствовало, что пульсары излучают волны пространства-времени, то есть энергию в их поле.

Гравитация – сила тяготения. Нас тянет к земле. А суть гравитационной волны – изменение этого поля, чрезвычайно слабое, когда до нас доходит. К примеру, возьмем уровень воды в водоёме. Напряженность гравитационного поля — ускорение свободного падения в конкретной точке. По нашему водоёму бежит волна, и вдруг меняется ускорение свободного падения, совсем чуть-чуть.

Такие опыты начались в 60-е годы прошлого столетия. В ту пору придумывали так: подвешивали огромный алюминиевый цилиндр, охлажденный во избежание внутренних тепловых колебаний. И ждали, когда до нас внезапно дойдет волна от столкновения, например, двух массивных черных дыр. Исследователи были полны энтузиазма и говорили, что весь земной шар может испытать воздействие гравитационной волны, прилетевшей из космического пространства. Планета начнет колебаться, и можно будет изучить эти сейсмические волны (сжатия, сдвига и поверхностные).

Важная статья об устройстве простым языком, и как американцы и LIGO украли идею советских учёных и построили интроферометры, позволившие сделать открытие. Никто не говорит об этом, все молчат!

Между прочим, гравитационное излучение больше интересно с позиции реликтового излучения, найти которое пытаются по изменению спектра электромагнитного излучения. Реликтовое и электромагнитное излучение появились 700 тыс. лет после Большого взрыва, затем в процессе расширения вселенной, заполненной горячим газом с бегающими ударными волнами, превратившимися позже в галактики. При этом, естественно, должны были излучаться гигантское, умопомрачительное количество волн пространства-времени, влияющих на длину волны реликтового излучения, которое в то время еще было оптическим. Отечественный астрофизик Сажин пишет и регулярно публикует статьи на эту тему.

Неверная интерпретация открытия гравитационных волн

«Висит зеркало, на него действует гравитационная волна, и оно начинает колебаться. И даже самые незначительные колебания амплитудой меньше размера атомного ядра замечаются приборами» — такая неверная интерпретация, например, используется в статье Википедии. Не поленитесь, найдите статью советских учёных 1962 года.

Во-первых, зеркало должно быть массивным, чтобы почувствовать «рябь». Во-вторых, его нужно охлаждать практически до абсолютного нуля (по Кельвину), чтобы избежать собственных тепловых колебаний. Скорее всего не то что в 21 веке, а вообще никогда не удастся обнаружить элементарную частицу — носителя гравитационных волн:

Гравитационные волны, теоретически предсказанные Эйнштейном еще в 1917 году, всё еще дожидаются своего первооткрывателя.

В конце 1969 года профессор физики Мэрилендского университета Джозеф Вебер сделал сенсационное заявление. Он объявил, что обнаружил волны тяготения, пришедшие на Землю из глубин космоса. До того времени ни один ученый не выступал с подобными претензиями, да и сама возможность детектирования таких волн считалась далеко не очевидной. Однако Вебер слыл авторитетом в своей области, и посему коллеги восприняли его сообщение с полной серьезностью.

Однако вскоре наступило разочарование. Амплитуды волн, якобы зарегистрированных Вебером, в миллионы раз превышали теоретическую величину. Вебер утверждал, что эти волны пришли из закрытого пылевыми облаками центра нашей Галактики, о котором тогда было мало что известно. Астрофизики предположили, что там скрывается гигантская черная дыра, которая ежегодно пожирает тысячи звезд и выбрасывает часть поглощенной энергии в виде гравитационного излучения, а астрономы занялись тщетным поиском более явственных следов этого космического каннибализма (сейчас доказано, что черная дыра там действительно есть, но ведет она себя вполне пристойно). Физики из США, СССР, Франции, Германии, Англии и Италии приступили к экспериментам на детекторах того же типа - и не добились ничего.

Ученые до сих пор не знают, чему приписать странные показания приборов Вебера. Однако его усилия не пропали даром, хотя гравитационные волны до сих пор так и не обнаружены. Несколько установок для их поиска уже построены или строятся, а лет через десять такие детекторы будут выведены и в космос. Вполне возможно, что в не столь отдаленном будущем гравитационное излучение станет такой же наблюдаемой физической реальностью, как и электромагнитные колебания. К сожалению, Джозеф Вебер этого уже не узнает - он умер в сентябре 2000 года.

Что такое волны тяготения

Часто говорят, что гравитационные волны - это распространяющиеся в пространстве возмущения поля тяготения. Такое определение правильно, но неполно. Согласно общей теории относительности, тяготение возникает из-за искривления пространственно-временного континуума. Волны тяготения - это флуктуации пространственно-временной метрики, которые проявляют себя как колебания гравитационного поля, поэтому их часто образно называют пространственно-временной рябью. Гравитационные волны были в 1917 году теоретически предсказаны Альбертом Эйнштейном. В существовании их никто не сомневается, но гравитационные волны всё еще дожидаются своего первооткрывателя.

Источником гравитационных волн служат любые движения материальных тел, приводящие к неоднородному изменению силы тяготения в окружающем пространстве. Движущееся с постоянной скоростью тело ничего не излучает, поскольку характер его поля тяготения не изменяется. Для испускания волн тяготения необходимы ускорения, но не любые. Цилиндр, который вращается вокруг своей оси симметрии, испытывает ускорение, однако его гравитационное поле остается однородным, и волны тяготения не возникают. А вот если раскрутить этот цилиндр вокруг другой оси, поле станет осциллировать, и от цилиндра во все стороны побегут гравитационные волны.

Этот вывод относится к любому телу (или системе тел), несимметричному относительно оси вращения (в таких случаях говорят, что тело имеет квадрупольный момент). Система масс, квадрупольный момент которой меняется со временем, всегда излучает гравитационные волны.

Основные свойства гравитационных волн

Астрофизики предполагают, что именно излучение гравитационных волн, отбирая энергию, ограничивает скорость вращения массивного пульсара при поглощении вещества соседней звезды.


Гравитационные маяки космоса

Гравитационное излучение земных источников чрезвычайно слабо. Стальная колонна массой 10 000 тонн, подвешенная за центр в горизонтальной плоскости и раскрученная вокруг вертикальной оси до 600 об./мин, излучает мощность примерно 10 -24 Вт. Поэтому единственная надежда обнаружить волны тяготения - найти космический источник гравитационного излучения.

В этом плане весьма перспективны тесные двойные звезды. Причина проста: мощность гравитационного излучения такой системы растет в обратной пропорции к пятой степени ее поперечника. Еще лучше, если траектории звезд сильно вытянуты, так как при этом возрастает скорость изменения квадрупольного момента. Совсем хорошо, если двойная система состоит из нейтронных звезд или черных дыр. Такие системы подобны гравитационным маякам в космосе - их излучение имеет периодический характер.

В космосе существуют и «импульсные» источники, порождающие короткие, но чрезвычайно мощные гравитационные всплески. Подобное происходит при коллапсе массивной звезды, предшествующем взрыву сверхновой. Однако деформация звезды должна быть асимметричной, иначе излучение не возникнет. Во время коллапса гравитационные волны могут унести с собой до 10% полной энергии светила! Мощность гравитационного излучения в этом случае составляет порядка 10 50 Вт. Еще больше энергии выделяется при слиянии нейтронных звезд, здесь пиковая мощность достигает 10 52 Вт. Превосходный источник излучения - столкновение черных дыр: их массы могут превышать массы нейтронных звезд в миллиарды раз.

Еще один источник гравитационных волн - космологическая инфляция. Сразу после Большого взрыва Вселенная начала чрезвычайно быстро расширяться, и меньше чем за 10 -34 секунды ее поперечник увеличился с 10 -33 см до макроскопического размера. Этот процесс неизмеримо усилил гравитационные волны, существовавшие до его начала, и их потомки сохранились до сих пор.

Косвенные подтверждения

Первое доказательство существования волн тяготения связано с работами американского радиоастронома Джозефа Тейлора и его студента Расселла Халса. В 1974 году они обнаружили пару обращающихся друг вокруг друга нейтронных звезд (излучающий в радиодиапазоне пульсар с молчаливым компаньоном). Пульсар вращался вокруг своей оси со стабильной угловой скоростью (что бывает далеко не всегда) и поэтому служил исключительно точными часами. Эта особенность позволила измерить массы обеих звезд и выяснить характер их орбитального движения. Оказалось, что период обращения этой двойной системы (около 3 ч 45 мин) ежегодно сокращается на 70 мкс. Эта величина хорошо согласуется с решениями уравнений общей теории относительности, описывающих потерю энергии звездной пары, обусловленную гравитационным излучением (впрочем, столкновение этих звезд случится нескоро, через 300 млн лет). В 1993 году Тейлор и Халс были удостоены за это открытие Нобелевской премии.

Гравитационно-волновые антенны

Как обнаружить гравитационные волны экспериментально? Вебер использовал в качестве детекторов сплошные алюминиевые цилиндры метровой длины с пьезодатчиками на торцах. Их с максимальной тщательностью изолировали от внешних механических воздействий в вакуумной камере. Два таких цилиндра Вебер установил в бункере под полем для гольфа Мэрилендского университета, и один - в Аргоннской национальной лаборатории.

Идея эксперимента проста. Пространство под действием гравитационных волн сжимается и растягивается. Благодаря этому цилиндр вибрирует в продольном направлении, выступая в качестве гравитационно-волновой антенны, а пьезоэлектрические кристаллы переводят вибрации в электрические сигналы. Любое прохождение космических волн тяготения практически одновременно действует на детекторы, разнесенные на тысячу километров, что позволяет отфильтровать гравитационные импульсы от различного рода шумов.

Веберовские датчики были в состоянии заметить смещения торцов цилиндра, равные всего 10 -15 его длины - в данном случае 10 -13 см. Именно такие колебания Веберу удалось обнаружить, о чем он впервые и сообщил в 1959 году на страницах Physical Review Letters . Все попытки повторить эти результаты оказались тщетными. Данные Вебера к тому же противоречат теории, которая практически не позволяет ожидать относительных смещений выше 10 -18 (причем гораздо вероятнее значения менее 10 -20). Не исключено, что Вебер напутал при статистической обработке результатов. Первая попытка экспериментально обнаружить гравитационное излучение закончилась неудачей.

В дальнейшем гравитационно-волновые антенны значительно усовершенствовали. В 1967 году американский физик Билл Фэйрбанк предложил охлаждать их в жидком гелии. Это не только позволило избавиться от большей части тепловых шумов, но и открыло возможность применения сквидов (сверхпроводящих квантовых интерферометров), точнейших сверхчувствительных магнитометров. Реализация этой идеи оказалась сопряжена с множеством технических трудностей, и сам Фэйрбанк до нее не дожил. К началу 1980-х годов физики из Стэнфордского университета построили установку с чувствительностью 10 -18 , однако волн не зарегистрировали. Сейчас в ряде стран действуют ультракриогенные вибрационные детекторы волн тяготения, работающие при температурах лишь на десятые и сотые доли градуса выше абсолютного нуля. Такова, например, установка AURIGA в Падуе. Антенной для нее служит трехметровый цилиндр из алюминиево-магниевого сплава, диаметр которого составляет 60 см, а вес - 2,3 т. Он подвешен в вакуумной камере, охлаждаемой до 0,1 К. Его сотрясения (с частотой порядка 1000 Гц) передаются на вспомогательный резонатор массой в 1 кг, который колеблется с такой же частотой, но много большей амплитудой. Эти вибрации регистрируются измерительной аппаратурой и анализируются с помощью компьютера. Чувствительность комплекса AURIGA - около 10 -20 -10 -21 .

Интерферометры

Еще один способ детектирования волн тяготения основан на отказе от массивных резонаторов в пользу световых лучей. Первыми в 1962 году его предложили советские физики Михаил Герценштейн и Владислав Пустовойт, а двумя годами позже и Вебер. В начале 1970-х сотрудник исследовательской лаборатории корпорации Hughes Aircraft Роберт Форвард (в прошлом аспирант Вебера, в дальнейшем весьма известный писатель-фантаст) построил первый такой детектор с вполне приличной чувствительностью. Тогда же профессор Массачусетского технологического института (MIT) Райнер Вайсс выполнил очень глубокий теоретический анализ возможностей регистрации гравитационных волн с помощью оптических методов.

Эти методы предполагают использование аналогов прибора, с помощью которого 125 лет назад физик Альберт Майкельсон доказал, что скорость света строго одинакова по всем направлениям. В этой установке, интерферометре Майкельсона, пучок света попадает на полупрозрачную пластинку и разделяется на два взаимно перпендикулярных луча, которые отражаются от зеркал, расположенных на одинаковом расстоянии от пластинки. Затем пучки опять сливаются и падают на экран, где возникает интерференционная картина (светлые и темные полосы и линии). Если скорость света зависит от его направления, то при повороте всей установки эта картинка должна измениться, если нет - остаться такой же, что и раньше.

Интерференционный детектор волн тяготения работает сходным образом. Проходящая волна деформирует пространство и изменяет длину каждого плеча интерферометра (пути, по которому свет идет от делителя до зеркала), растягивая одно плечо и сжимая другое. Интерференционная картинка меняется, и это можно зарегистрировать. Но это непросто: если ожидаемое относительное изменение длины плеч интерферометра составляет 10 -20 , то при настольных размерах прибора (как у Майкельсона) оно оборачивается колебаниями амплитудой порядка 10 -18 см. Для сравнения: волны видимого света в 10 трлн раз длиннее! Можно увеличить протяженность плеч до нескольких километров, однако проблемы всё равно останутся. Лазерный источник света должен быть и мощным, и стабильным по частоте, зеркала - идеально плоскими и идеально отражающими, вакуум в трубах, по которым распространяется свет, - максимально глубоким, механическая стабилизация всей системы - воистину совершенной. Короче говоря, интерференционный детектор гравитационных волн - прибор дорогой и громоздкий.

Сегодня самая большая установка такого рода - американский комплекс LIGO (Light Interferometer Gravitational Waves Observatory ). Он состоит из двух обсерваторий, одна из которых находится на тихоокеанском побережье США, а другая - неподалеку от Мексиканского залива. Измерения производят с помощью трех интерферометров (два в штате Вашингтон, один в Луизиане) с плечами четырехкилометровой длины. Установка снабжена зеркальными накопителями света, которые увеличивают ее чувствительность. «С ноября 2005 года все три наших интерферометра работают в нормальном режиме, - рассказал «Популярной механике» представитель комплекса LIGO Питер Солсон, профессор физики Сиракузского университета. - Мы постоянно обмениваемся данными с другими обсерваториями, пытающимися обнаружить гравитационные волны частотой в десятки и сотни герц, возникшие при самых мощных взрывах сверхновых и слиянии нейтронных звезд и черных дыр. Сейчас в строю находится немецкий интерферометр GEO 600 (длина плеч - 600 м), расположенный в 25 км от Ганновера. 300-метровый японский прибор TAMA в настоящее время модернизируется. Трехкилометровый детектор Virgo в окрестностях Пизы подключится к общим усилиям в начале 2007-го, причем на частотах менее 50 Гц он сможет превзойти LIGO. Установки с ультракриогенными резонаторами действуют с возрастающей эффективностью, хотя их чувствительность всё же несколько меньше нашей».

Перспективы

Что же ожидает методы обнаружения гравитационных волн в ближайшем будущем? Об этом «Популярной механике» рассказал профессор Райнер Вайсс: «Через несколько лет в обсерваториях комплекса LIGO установят более мощные лазеры и более совершенные детекторы, что приведет к 15-кратному увеличению чувствительности. Сейчас она составляет 10 -21 (на частотах порядка 100 Гц), а после модернизации превысит 10 -22 . Модернизированный комплекс, Advanced LIGO, в 15 раз увеличит глубину проникновения в космос. В этом проекте активно участвует профессор МГУ Владимир Брагинский, один из пионеров изучения гравитационных волн.

На середину следующего десятилетия запланирован запуск космического интерферометра LISA (Laser Interferometer Space Antenna ) с длиной плеч в 5 миллионов километров, это совместный проект NASA и Европейского космического агентства. Чувствительность этой обсерватории будет в сотни раз выше, чем возможности наземных инструментов. Она в первую очередь предназначена для поиска низкочастотных (10 -4 -10 -1 Гц) гравитационных волн, которые невозможно уловить на поверхности Земли из-за атмосферных и сейсмических помех. Такие волны испускают двойные звездные системы, вполне типичные обитатели Космоса. LISA также сможет регистрировать волны тяготения, возникшие при поглощении черными дырами обыкновенных звезд. А вот для детектирования реликтовых гравитационных волн, несущих информацию о состоянии материи в первые мгновения после Большого взрыва, скорее всего, потребуются более продвинутые космические инструменты. Такая установка, Big Bang Observer , сейчас обсуждается, однако вряд ли ее удастся создать и запустить ранее чем через 30-40 лет».

Ключевое отличие в том, что если звуку нужна среда, в которой он путешествует, гравитационные волны движут среду - в данном случае само пространство-время. «Они буквально раздавливают и растягивают ткань пространства-времени», - говорит Кьяра Мингарелли, астрофизик гравитационных волн в Калтехе. Для наших ушей, волны, обнаруженные LIGO, будут звучать как бульк.

Как именно будет происходить эта революция? У LIGO сейчас есть два детектора, которые выступают «ушами» для ученых, и в будущем будет еще больше детекторов. И если LIGO стала первой обнаружившей, она явно не будет единственной. Типов гравитационных волн весьма много. На самом деле, их целый спектр, подобно тому, как бывают разные типы света, с различной длиной волны, в электромагнитном спектре. Поэтому и другие коллаборации вступят в охоту на волны с частотой, на которую не рассчитана LIGO.

Мингарелли работает с коллаборацией NanoGRAV (северо-американской наногерцевой обсерваторией гравитационных волн), частью крупного международного консорциума, в который входят European Pulsar Timing Array и Parkes Pulsar Timing Array в Австралии. Как следует из названия, ученые NanoGRAV охотятся на низкочастотные гравитационные волны в режиме от 1 до 10 наногерц; чувствительность LIGO находится в килогерцевой (слышимой) части спектра, ищет очень длинные волны.


Эта коллаборация опирается на данные пульсаров, собранные обсерваторией Аресибо в Пуэрто-Рико и телескопом Грин-Бэнк в Западной Вирджинии. Пульсары это быстро вращающиеся нейтронные звезды, которые образуются, когда звезды массивнее Солнца взрываются и коллапсируют в себя. Они вращаются все быстрее и быстрее по мере сжатия, подобно тому как грузик на конце веревки крутится тем быстрее, чем короче становится веревка.

Они также испускают мощные всплески излучения по мере вращения, как маяк, которые фиксируются как импульсы света на Земле. И это периодическое вращение чрезвычайно точное - почти так же точно, как атомные часы. Оно делает их идеальными космическими детекторами гравитационных волн. Первое непрямое доказательство пришло в процессе изучения пульсаров в 1974 году, когда Джозеф Тейлор-младший и Расселл Халс обнаружили, что пульсар, вращающийся вокруг нейтронной звезды, медленно сжимается со временем - такой эффект можно было бы ожидать, если бы он преобразовывал часть своей массы в энергию в форме гравитационных волн.

В случае NanoGRAV, дымящимся пистолетом будет своего рода мерцание. Импульсы должны приходить одновременно, но если в них попадает гравитационная волна, они будут приходить чуть раньше или позже, поскольку пространство-время будет сжиматься или растягиваться по мере прохождения волны.

Массивы пульсарных временных решеток особенно чувствительны к гравитационным волнам, произведенным путем слияния сверхмассивных черных дыр в миллиард или десять миллиардов раз больше массы нашего Солнца, вроде тех, что скрываются в центре самых массивных галактик. Если две таких галактики сольются, дыры в их центрах также сольются и испустят гравитационные волны. «LIGO видит самый конец слияния, когда пары оказываются очень близко, - говорит Мингарелли. - С помощью МПВР мы могли бы видеть их в начале спиральной фазы, когда они только вступают в орбиту друг друга».

А есть еще космическая миссия LISA (Laser Interferometer Space Antenna). Находящаяся на Земле LIGO прекрасно обнаруживает гравитационные волны, эквивалентные части спектра слышимого звука - вроде того, что произвели наши сливающиеся черные дыры. Но множество интересных источников этих волн выдают низкие частоты. Поэтому физики должны отправиться в космос, чтобы обнаружить их. Основная задача текущей миссии LISA Pathfinder () - проверить работу детектора. «С LIGO вы можете остановить работу инструмента, вскрыть вакуум и все починить, - говорит Скотт Хьюз из MIT. - Но в космосе ничего не вскроешь. Придется сразу нормально делать, чтоб нормально работало».

Цель LISA проста: используя лазерные интерферометры, космический аппарат попытается точно измерить относительное положение двух 1,8-дюймовых золото-платиновых кубов в состоянии свободного падения. Размещенные в отдельных электродных боксах в 15 дюймах друг от друга, тестовые объекты будут защищены от солнечного ветра и других внешних сил, так что будет возможно обнаружить крошечное движение, вызванное гравитационными волнами (будем надеяться).

Наконец, есть два эксперимента, спроектированных для поиска отпечатков, оставленных первичными гравитационными волнами в реликтовом излучении (послесвечении Большого Взрыва): BICEP2 и миссия спутника Планка. BICEP2 заявил об обнаружении таковой в 2014 году, но оказалось, что сигнал был фальшивым (виновата космическая пыль).

Обе коллаборации продолжают охоту в надежде пролить свет на раннюю историю нашей Вселенной - и, надеюсь, подтверждение ключевых прогнозов инфляционной теории. Эта теория предсказала, что вскоре после своего рождения Вселенная пережила быстрый рост, который не мог не оставить мощных гравитационных волн, оставшихся отпечатком в реликтовом излучении в форме особых световых волн (поляризации).

Каждый из четырех режимов гравитационных волн откроет астрономам четыре новых окна на Вселенную.

Но мы-то знаем, о чем вы думаете: пора запускать варп-двигатель, чуваки! Поможет ли открытие LIGO построить Звезду Смерти на следующей неделе? Конечно, нет. Но чем лучше мы поймем гравитацию, тем шире мы будем понимать, как строить подобные вещи. В конце концов, это работа ученых, этим они зарабатывают на хлеб. Понимая, как работает Вселенная, мы можем больше полагаться на свои возможности.

    Но мне больше интересно, что из неожиданного можно обнаружить с помощью гравитационных волн. Каждый раз, когда люди наблюдали Вселенную по-новому, мы открывали много неожиданных вещей, которые переворачивали наше представление о Вселенной. Я хочу найти эти гравитационные волны и обнаружить что-то, о чем мы понятия не имели раньше.

    Поможет ли это нам сделать настоящий варп-двигатель?

    Поскольку гравитационные волны слабо взаимодействуют с веществом, их вряд ли можно использовать для движения этого вещества. Но даже если бы вы могли, гравитационная волна движется всего лишь со скоростью света. Для варп-двигателя они не подойдут. Хотя было бы круто.

    Как насчет антигравитационных устройств?

    Чтобы создать антигравитационное устройство, нам нужно превратить силу притяжения в силу отталкивания. И хотя гравитационная волна распространяет изменения гравитации, это изменение никогда не будет отталкивающим (или отрицательным).

    Гравитация всегда притягивает, поскольку отрицательной массы, похоже, не существует. В конце концов, существует положительный и отрицательный заряд, северный и южный магнитный полюс, но только положительная масса. Почему? Если бы отрицательная масса существовала, шар вещества падал бы вверх, а не вниз. Он бы отталкивался от положительной массы Земли.

    Что это означает для возможности путешествий во времени и телепортации? Можем ли мы найти практическое применение этому явлению, кроме изучения нашей Вселенной?

    Сейчас лучший способ путешествия во времени (и только в будущее) - это путешествовать с околосветовой скоростью (вспомним парадокс близнецов в ОТО) либо отправиться в область с повышенной гравитацией (такого рода путешествие во времени было продемонстрировано в «Интерстелларе»). Поскольку гравитационная волна распространяет изменения в гравитации, будут рождаться и очень малые флуктуации в скорости времени, но поскольку гравитационные волны по сути слабые, слабые также и временные флуктуации. И хотя я не думаю, что можно применить это к путешествиям во времени (или телепортации), никогда не говори никогда (спорю, у вас перехватило дыхание).

    Настанет ли день, когда мы перестанем подтверждать Эйнштейна и снова начнем поиски странных вещей?

    Конечно! Поскольку гравитация самая слабая из сил, с ней также трудно экспериментировать. До сих пор каждый раз, когда ученые подвергали ОТО проверке, они получали точно спрогнозированные результаты. Даже обнаружение гравитационных волн в очередной раз подтвердило теорию Эйнштейна. Но я полагаю, когда мы начнем проверять мельчайшие детали теории (может, с гравитационными волнами, может, с другим), мы будем находить «забавные» вещи, вроде не совсем точного совпадения результата эксперимента с прогнозом. Это не будет означать ошибочность ОТО, лишь необходимость уточнения ее деталей.

    Каждый раз, когда мы отвечаем на один вопрос о природе, появляются новые. В конце концов, у нас появятся вопросы, которые будет круче, чем ответы, которые может позволить ОТО.

    Можете ли вы объяснить, как это открытие может быть связано или повлияет на теорию единого поля? Мы оказались ближе к ее подтверждению или же развенчанию?

    Сейчас результаты сделанного нами открытия в основном посвящают проверке и подтверждению ОТО. Единая теория поля ищет способ создать теорию, которая объяснит физику очень малого (квантовая механика) и очень большого (общая теория относительности). Сейчас эти две теории можно обобщить, чтобы объяснить масштабы мира, в котором мы живем, но не более. Поскольку наше открытие сосредоточено на физике очень большого, само по себе оно мало продвинет нас в направлении единой теории. Но вопрос не в этом. Сейчас только-только родилась область гравитационно-волновой физики. Когда мы узнаем больше, мы обязательно расширим наши результаты и в области единой теории. Но перед пробежкой нужно пройтись.

    Теперь, когда мы слушаем гравитационные волны, что должны услышать ученые, чтобы буквально выс*ать кирпич? 1) Неестественные паттерны/структуры? 2) Источники гравитационных волн из регионов, которые мы считали пустыми? 3) Rick Astley - Never gonna give you up?

    Когда я прочитала ваш вопрос, я сразу вспомнила сцену из «Контакта», в которой радиотелескоп улавливает паттерны простых чисел. Вряд ли такое можно встретить в природе (насколько нам известно). Так что ваш вариант с неестественным паттерном или структурой был бы наиболее вероятен.

    Не думаю, что мы когда-то будем уверены в пустоте в определенном регионе космоса. В конце концов, система черных дыр, которую мы обнаружили, была изолирована, и из этого региона не приходил никакой свет, но мы все равно обнаружили там гравитационные волны.

    Что касается музыки… Я специализируюсь на отделении сигналов гравитационных волн от статического шума, который мы постоянно измеряем на фоне окружающей среды. Если бы я нашла в гравитационной волне музыку, особенно которую слышала раньше, это был бы розыгрыш. Но музыка, которую на Земле никогда не слышали… Это было бы как с простыми случаями из «Контакта».

    Раз эксперимент регистрирует волны по изменению расстояния между двумя объектами, амплитуда одного направления больше, чем другого? В противном случае не означают ли считываемые данные, что Вселенная меняется в размерах? И если так, подтверждает ли это расширение или что-нибудь неожиданное?

    Нам нужно увидеть множество гравитационных волн, приходящих из множества разных направлений во Вселенной, прежде чем мы сможем ответить на этот вопрос. В астрономии это создает модель популяции. Как много различных типов вещей существует? Это главный вопрос. Как только мы заимеем много наблюдений и начнем видеть неожиданные паттерны, к примеру, что гравитационные волны определенного типа приходят из определенной части Вселенной и больше ниоткуда, это будет крайне интересный результат. Некоторые паттерны могли бы подтвердить расширение (в котором мы весьма уверены), либо другие явления, о которых мы пока не знали. Но сначала нужно увидеть много больше гравитационных волн.

    Мне совершенно непонятно, как ученые определили, что измеренные ими волны принадлежат двум сверхмассивным черным дырам. Как можно с такой точностью определить источник волн?

    Методы анализа данных используют каталог предсказанных сигналов гравитационных волн для сравнения с нашими данными. Если имеется сильная корреляция с одним из таких прогнозов, или шаблонов, то мы не только знаем, что это гравитационная волна, но и знаем, какая система ее образовала.

    Каждый отдельный способ создания гравитационной волны, будь то слияние черных дыр, вращение или смерть звезд, все волны имеют разные формы. Когда мы обнаруживаем гравитационную волну, мы используем эти формы, как предсказывала ОТО, чтобы определить их причину.

    Откуда мы знаем, что эти волны произошли из столкновения двух черных дыр, а не какого-нибудь другого события? Возможно ли предсказать, где или когда произошло такое событие, с любой степенью точности?

    Как только мы узнаем, какая система произвела гравитационную волну, мы можем предсказать, насколько сильной была гравитационная волна вблизи от места своего рождения. Измеряя ее силу по мере достижения Земли и сравнивая наши измерения с предсказанной силой источника, мы можем рассчитать, как далеко находится источник. Поскольку гравитационные волны движутся со скоростью света, мы также можем рассчитать, как долго гравитационные волны двигались к Земле.

    В случае с обнаруженной нами системой черных дыр, мы измерили максимальное изменение длины рукавов LIGO на 1/1000 диаметра протона. Эта система расположена в 1,3 миллиарда световых лет. Гравитационная волна, обнаруженная в сентябре и анонсированная на днях, двигалась к нам 1,3 миллиарда лет. Это произошло до того, как на Земле образовалась животная жизнь, но уже после возникновения многоклеточных.

    Во время объявления было заявлено, что другие детекторы будут искать волны с более длинным периодом - некоторые из них будут вовсе космическими. Что вы можете рассказать об этих крупных детекторах?

    В разработке действительно находится космический детектор. Он называется LISA (Laser Interferometer Space Antenna). Поскольку он будет в космосе, он будет достаточно чувствительным к низкочастотным гравитационным волнам, в отличие от земных детекторов, вследствие естественных вибраций Земли. Будет сложно, поскольку спутники придется разместить дальше от Земли, чем бывал человек. Если что-то пойдет не так, мы не сможем отправить астронавтов на ремонт, . Чтобы проверить необходимые технологии, . Пока что она справилась со всеми поставленными задачами, но миссия еще далека от завершения.

    Можно ли преобразовать гравитационные волны в звуковые? И если да, на что они будут похожи?

    Можно. Конечно, вы не услышите просто гравитационную волну. Но если взять сигнал и пропустить через динамики, то услышать можно.

    Что нам делать с этой информацией? Излучают ли эти волны другие астрономические объекты с существенной массой? Можно ли использовать волны для поиска планет или простых черных дыр?

    При поиске гравитационных значений имеет значение не только масса. Также ускорение, которое присуще объекту. Обнаруженные нами черные дыры вращались друг вокруг друга со скоростью в 60% световой, когда сливались. Поэтому мы смогли обнаружить их во время слияния. Но теперь от них больше не поступает гравитационных волн, поскольку они слились в одну малоподвижную массу.

    Так что все, что обладает большой массой и движется очень быстро, создает гравитационные волны, которые можно уловить.

    Экзопланеты вряд ли будут обладать достаточной массой или ускорением, чтобы создать обнаружимые гравитационные волны. (Я не говорю, что они их не создают вообще, только то, что они будут недостаточно сильными или с другой частотой). Даже если экзопланета будет достаточно массивной, чтобы производить нужные волны, ускорение разорвет ее на части. Не забывайте, что самые массивные планеты, как правило, представляют собой газовых гигантов.

    Насколько верна аналогия волн в воде? Можем ли мы «оседлать» эти волны? Существуют ли гравитационные «пики», как уже известные «колодцы»?

    Поскольку гравитационные волны могут двигаться через вещество, нет никакого способа оседлать их или использовать их для движения. Так что никакого гравитационно-волнового серфинга.

    «Пики» и «колодцы» - это прекрасно. Гравитация всегда притягивает, поскольку не существует отрицательной массы. Мы не знаем почему, но ее никогда не наблюдали в лаборатории или во Вселенной. Поэтому гравитацию обычно представляют в виде «колодца». Масса, которая движется вдоль этого «колодца», будет сваливаться вглубь; так работает притяжение. Если у вас будет отрицательная масса, то вы получите отталкивание, а вместе с ним и «пик». Масса, которая движется на «пике», будет изгибаться от него. Так что «колодцы» существуют, а «пики» нет.

    Аналогия с водой прекрасна, пока мы говорим о том, что сила волны уменьшается вместе с пройденным расстоянием от источника. Водяная волна будет становиться меньше и меньше, а гравитационная волна - слабее и слабее.

    Как это открытие повлияет на наше описание инфляционного периода Большого Взрыва?

    На данный момент это открытие пока практически никак не затрагивает инфляцию. Чтобы делать заявления вроде этого, необходимо наблюдать реликтовые гравитационные волны Большого Взрыва. Проект BICEP2 полагал, что косвенно наблюдал эти гравитационные волны, но оказалось, что виной всему космическая пыль. Если он получит нужные данные, вместе с ними подтвердится и существование короткого периода инфляции вскоре после Большого Взрыва.

    LIGO сможет непосредственно увидеть эти гравитационные волны (это также будет самый слабый тип гравитационных волн, который мы надеемся обнаружить). Если мы их увидим, то сможем заглянуть глубоко в прошлое Вселенной, как не заглядывали раньше, и по полученным данным судить об инфляции.