Поглощение рентгеновского излучения дуальная энергия. Спектры поглощения рентгеновских лучей. Часто пользуются массовыми коэффициентами

При прохождении рентгеновских лучей через вещество их энергия уменьшается из-за поглощения и рассеяния. Ослабление интенсивности параллельного пучка рентгеновских лучей, проходящих через вещество, определяется законом Бугера: I = I0·e -μd , где I 0 - начальная интенсивность рентгеновского излучения; I - интенсивность рентгеновских лучей, прошедших через слой вещества, d – толщина поглощающего слоя, μ - линейный коэффициент ослабления. Он равен сумме двух величин: t - линейного коэффициента поглощения и σ - линейного коэффициента рассеяния: μ = τ+σ

В экспериментах обнаружено, что линейный коэффициент поглощения зависит от атомного номера вещества и длины волны рентгеновских лучей:

τ = kρZ 3 λ 3 , где k - коэффициент прямой пропорциональности, ρ - плотность вещества, Z – атомный номер элемента, λ - длина волны рентгеновских лучей.

Зависимость от Z очень важна с практической точки зрения. Например, коэффициент поглощения костей, которые состоят из фосфата кальция, почти в 150 раз превышает коэффициент поглощения мягких тканей (Z =20 для кальция и Z =15 для фосфора). При прохождении рентгеновских лучей через тело человека, кости четко выделяются на фоне мышц, соединительной ткани и т.п.

Известно, что пищеварительные органы имеют такую же величину коэффициента поглощения, как и другие мягкие ткани. Но тень пищевода, желудка и кишечника можно различить, если пациент примет внутрь контрастное вещество - сернокислый барий (Z= 56 для бария). Сернокислый барий очень непрозрачен для рентгеновских лучей и часто используется для рентгенологического обследования желудочно-кишечного тракта. Определенные непрозрачные смеси вводят в кровяное русло для того, чтобы исследовать состояние кровеносных сосудов, почек и т.п. Как контрастное вещество в этом случае используют йод, атомный номер которого составляет 53.

Зависимость поглощения рентгеновских лучей от Z используют также для защиты от возможного вредного действия рентгеновского излучения. Для этой цели применяют свинец, величина Z для которого равна 82.

Конец работы -

Эта тема принадлежит разделу:

Природа рентгеновских лучей

Дозиметрия излучений поглощенная доза излучения это энергия ионизирующего излучения.. излучение в медицине.. медицинская радиология является разделом медицинской науки в котором используются излучения в диагностике и лечении..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Природа рентгеновских лучей
Рентгеновские лучи были обнаружены случайно в 1895 году знаменитым немецким физиком Вильгельмом Рентгеном. Он изучал катодные лучи в газоразрядной трубке низкого давления при высоком напряжении меж

Получение рентгеновского излучения
Рентгеновские лучи возникают, когда быстрые электроны, или катодные лучи, сталкиваются со стенками или анодом газоразрядной трубки низкого давления. Современная рентгеновская трубка представляет со

Тормозное рентгеновское излучение
Тормозное рентгеновское излучение возникает при торможении электронов, движущихся с большой скоростью, электрическими полями атомов анода. Условия торможения отдельных электронов не одинаковы. В ре

Характеристическое рентгеновское излучение
Характеристическое рентгеновское излучение имеет не сплошной, а линейчатый спектр. Этот тип излучения возникает, когда быстрый электрон, достигая анода, проникает во внутренние орбитали атом

Первичные физические механизмы взаимодействия рентгеновского излучения с веществом
Для первичного взаимодействия между рентгеновским излучением и веществом характерно три механизма: 1. Когерентное рассеяние. Эта форма взаимодействия происходит, когда фотоны рентген

Некоторые эффекты взаимодействия рентгеновского излучения с веществом
Как было упомянуто выше, рентгеновские лучи способны возбуждать атомы и молекулы вещества. Это может вызывать флюоресценцию определенных веществ (например, сульфата цинка). Если параллельный пучок

Применение рентгеновского излучения в медицине
Причиной применения рентгеновского излучения в диагностике послужила их высокая проникающая способность. В первое время после открытия, рентгеновское излучение использовалось по большей части, для

Атомное ядро
Известно, что атомное ядро является небольшим образованием, состоящим из нуклонов, которые включают два типа элементарных частиц: протоны и нейтроны. Протон имеет положительный электрический заряд,

Радиоактивность
Радиоактивность - спонтанный распад (дезинтеграция) атомного ядра с излучением субатомных частиц и электромагнитных лучей. Этот феномен был обнаружен в 1896г французским физиком Беккерелем.

Активность. Закон ядерного распада
Существует два вида радиоактивности: естественная и искусственная. Естественная радиоактивность происходит спонтанно без любого внешнего воздействия. Она является результатом нестабил

Ионизирующие излучения
Радиоактивный распад ядер приводит к образованию нескольких типов ионизирующих излучений. Такое излучение, проходя через вещества, ионизирует их атомы и молекулы, то есть превращает их в электричес

Нейтроны
Нейтроны являются незаряженными частицами и производят ионизацию косвенно, взаимодействуя первоначально с атомными ядрами, а не с электронами. Они обладают широким диапазоном длины пробега в вещест

Обнаружение и измерение излучений
Существует много типов приборов, которые используются для обнаружения ионизирующих излучений. Наиболее часто применяют счетчики, которые являются очень чувствительными детекторами α-частиц, но

Дозиметрия излучений
Для определения интенсивности излучений используется дозиметрия, которую производят разными способами. Основными дозами, используемыми в дозиметрии, являются: поглощенная до

Вредное действие излучения
Энергия ионизирующих излучений значительно отличается от тепловой энергии. Смертельная экспозиционная доза гамма-лучей очень незначительно изменяет температуру тела. Излучения, проходя через живые

Хроническое действие небольших доз излучения
Все люди подвержены хроническому действию низких доз ионизирующего излучения, которое возникает от космических лучей и от радионуклидов, содержащихся в окружающей среде. Космические лучи включают п

Радионуклиды в медицинских исследованиях
В настоящее время синтезируется большое число различных биологических смесей, которые содержат радионуклиды водорода, углерода, фосфора, серы и т.п. Их вводят в организм экспериментальных животных

Радионуклиды в диагностике
Радиоактивные следящие устройства поглощаются исследуемым органом. Детектор излучения находится за пределами органа на протяжение какого-то времени и в различных положениях. Для того чтобы минимизи

Терапевтическая радиология
Делящиеся клетки наиболее чувствительны к действию ионизирующего излучения. Клетки злокачественных опухолей делятся более часто, чем клетки нормальных тканей. Быстро делящиеся раковые клетки и клет

Рентгеновское излучение (синоним рентгеновские лучи) - это с широким диапазоном длин волн (от 8·10 -6 до 10 -12 см). Рентгеновское излучение возникает при торможении заряженных частиц, чаще всего электронов, в электрическом поле атомов вещества. Образующиеся при этом кванты имеют различную энергию и образуют непрерывный спектр. Максимальная энергия квантов в таком спектре равна энергии налетающих электронов. В (см.) максимальная энергия квантов рентгеновского излучения, выраженная в килоэлектрон-вольтах, численно равна величине приложенного к трубке напряжения, выраженного в киловольтах. При прохождении через вещество рентгеновское излучение взаимодействует с электронами его атомов. Для квантов рентгеновского излучения с энергией до 100 кэв наиболее характерным видом взаимодействия является фотоэффект. В результате такого взаимодействия энергия кванта полностью расходуется на вырывание электрона из атомной оболочки и сообщения ему кинетической энергии. С ростом энергии кванта рентгеновского излучения вероятность фотоэффекта уменьшается и преобладающим становится процесс рассеяния квантов на свободных электронах - так называемый комптон-эффект. В результате такого взаимодействия также образуется вторичный электрон и, кроме того, вылетает квант с энергией меньшей, чем энергия первичного кванта. Если энергия кванта рентгеновского излучения превышает один мегаэлектрон-вольт, может иметь место так называемый эффект образования пар, при котором образуются электрон и позитрон (см. ). Следовательно, при прохождении через вещество происходит уменьшение энергии рентгеновского излучения, т. е. уменьшение его интенсивности. Поскольку при этом с большей вероятностью происходит поглощение квантов низкой энергии, то имеет место обогащение рентгеновского излучения квантами более высокой энергии. Это свойство рентгеновского излучения используют для увеличения средней энергии квантов, т. е. для увеличения его жесткости. Достигается увеличение жесткости рентгеновского излучения использованием специальных фильтров (см. ). Рентгеновское излучение применяют для рентгенодиагностики (см. ) и (см.). См. также Излучения ионизирующие.

Рентгеновское излучение (синоним: рентгеновские лучи, рентгеновы лучи) - квантовое электромагнитное излучение с длиной волны от 250 до 0,025 А (или квантов анергии от 5·10 -2 до 5·10 2 кэв). В 1895 г. открыто В. К. Рентгеном. Смежную с рентгеновским излучением спектральную область электромагнитного излучения, кванты энергии которого превышают 500 кэв, называют гамма-излучением (см.); излучение, кванты энергии которого ниже значений 0,05 кэв, составляет ультрафиолетовое излучение (см.).

Таким образом, представляя относительно небольшую часть обширного спектра электромагнитных излучений, в который входят и радиоволны и видимый свет, рентгеновское излучение, как всякое электромагнитное излучение, распространяется со скоростью света (в пустоте около 300 тыс. км/сек) и характеризуется длиной волны λ (расстояние, на которое излучение распространяется за один период колебания). Рентгеновское излучение обладает также рядом других волновых свойств (преломление, интерференция, дифракция), однако наблюдать их значительно сложнее, чем у более длинноволнового излучения: видимого света, радиоволн.

Спектры рентгеновского излучения: а1 - сплошной тормозной спектр при 310 кв; а - сплошной тормозной спектр при 250 кв, а1 - спектр, фильтрованный 1 мм Cu, а2 - спектр, фильтрованный 2 мм Cu, б - К-серия линии вольфрама.

Для генерирования рентгеновского излучения применяют рентгеновские трубки (см.), в которых излучение возникает при взаимодействии быстрых электронов с атомами вещества анода. Различают рентгеновские излучения двух видов: тормозное и характеристическое. Тормозное рентгеновское излучение, имеющее сплошной спектр, подобно обычному белому свету. Распределение интенсивности в зависимости от длины волны (рис.) представляется кривой с максимумом; в сторону длинных волн кривая спадает полого, а в сторону коротких - круто и обрывается при определенной длине волны (λ0), называемой коротковолновой границей сплошного спектра. Величина λ0 обратно пропорциональна напряжению на трубке. Тормозное излучение возникает при взаимодействии быстрых электронов с ядрами атомов. Интенсивность тормозного излучения прямо пропорциональна силе анодного тока, квадрату напряжения на трубке и атомному номеру (Z) вещества анода.

Если энергия ускоренных в рентгеновской трубке электронов превосходит критическую для вещества анода величину (эта энергия определяется критическим для этого вещества напряжением на трубке Vкр), то возникает характеристическое излучение. Характеристический спектр - линейчатый, его спектральные линии образуют серии, обозначаемые буквами К, L, М, N.

Серия К - самая коротковолновая, серия L - более длинноволновая, серии М и N наблюдаются только у тяжелых элементов (Vкр вольфрама для К-серии - 69,3 кв, для L-серии - 12,1 кв). Характеристическое излучение возникает следующим образом. Быстрые электроны выбивают атомные электроны из внутренних оболочек. Атом возбуждается, а затем возвращается в основное состояние. При этом электроны из внешних, менее связанных оболочек заполняют освободившиеся во внутренних оболочках места, и излучаются фотоны характеристического излучения с энергией, равной разности энергий атома в возбужденном и основном состоянии. Эта разность (а следовательно, и энергия фотона) имеет определенное значение, характерное для каждого элемента. Это явление лежит в основе рентгеноспектрального анализа элементов. На рисунке виден линейчатый спектр вольфрама на фоне сплошного спектра тормозного излучения.

Энергия ускоренных в рентгеновской трубке электронов преобразуется почти целиком в тепловую (анод при этом сильно нагревается), лишь незначительная часть (около 1% при напряжении, близком к 100 кв) превращается в энергию тормозного излучения.

Применение рентгеновского излучения в медицине основано на законах поглощения рентгеновых лучей веществом. Поглощение рентгеновского излучения совершенно не зависит от оптических свойств вещества поглотителя. Бесцветное и прозрачное свинцовое стекло, используемое для защиты персонала рентгеновских кабинетов, практически полностью поглощает рентгеновское излучение. Напротив, лист бумаги, не прозрачный для света, не ослабляет рентгеновского излучения.

Интенсивность однородного (т. е. определенной длины волны) пучка рентгеновского излучения при прохождении через слой поглотителя уменьшается по экспоненциальному закону (е-х), где е - основание натуральных логарифмов (2,718), а показатель экспоненты х равен произведению массового коэффициента ослабления (μ/р) см 2 /г на толщину поглотителя в г/см 2 (здесь р - плотность вещества в г/см 3). Ослабление рентгеновского излучения происходит как за счет рассеяния, так и за счет поглощения. Соответственно массовый коэффициент ослабления является суммой массовых коэффициентов поглощения и рассеяния. Массовый коэффициент поглощения резко возрастает с увеличением атомного номера (Z) поглотителя (пропорционально Z3 или Z5) и с увеличением длины волны (пропорционально λ3). Указанная зависимость от длины волны наблюдается в пределах полос поглощения, на границах которых коэффициент обнаруживает скачки.

Массовый коэффициент рассеяния возрастает с увеличением атомного номера вещества. При λ≥0,ЗÅ коэффициент рассеяния от длины волны не зависит, при λ<0,ЗÅ он уменьшается с уменьшением λ.

Уменьшение коэффициентов поглощения и рассеяния с уменьшением длины волны обусловливает возрастание проникающей способности рентгеновского излучения. Массовый коэффициент поглощения для костей [поглощение в основном обусловлено Са 3 (РO 4) 2 ] почти в 70 раз больше, чем для мягких тканей, где поглощение в основном обусловлено водой. Это объясняет, почему на рентгенограммах так резко выделяется тень костей на фоне мягких тканей.

Распространение неоднородного пучка рентгеновского излучения через любую среду наряду с уменьшением интенсивности сопровождается изменением спектрального состава, изменением качества излучения: длинноволновая часть спектра поглощается в большей степени, чем коротковолновая, излучение становится более однородным. Отфильтровывание длинноволновой части спектра позволяет при рентгенотерапии очагов, глубоко расположенных в теле человека, улучшить соотношение между глубинной и поверхностной дозами (см. Рентгеновские фильтры). Для характеристики качества неоднородного пучка рентгеновых лучей используется понятие «слой половинного ослабления (Л)» - слой вещества, ослабляющий излучение наполовину. Толщина этого слоя зависит от напряжения на трубке, толщины и материала фильтра. Для измерения слоев половинного ослабления используют целлофан (до энергии 12 кэв), алюминий (20-100 кэв), медь (60-300 кэв), свинец и медь (>300 кэв). Для рентгеновых лучей, генерируемых при напряжениях 80-120 кв, 1 мм меди по фильтрующей способности эквивалентен 26 мм алюминия, 1 мм свинца - 50,9 мм алюминия.

Поглощение и рассеяние рентгеновского излучения обусловлено его корпускулярными свойствами; рентгеновское излучение взаимодействует с атомами как поток корпускул (частиц) - фотонов, каждый из которых имеет определенную энергию (обратно пропорциональную длине волны рентгеновского излучения). Интервал энергий рентгеновских фотонов 0,05-500 кэв.

Поглощение рентгеновского излучения обусловлено фотоэлектрическим эффектом: поглощение фотона электронной оболочкой сопровождается вырыванием электрона. Атом возбуждается и, возвращаясь в основное состояние, испускает характеристическое излучение. Вылетающий фотоэлектрон уносит всю энергию фотона (за вычетом энергии связи электрона в атоме).

Рассеяние рентгеновского излучения обусловлено электронами рассеивающей среды. Различают классическое рассеяние (длина волны излучения не меняется, но меняется направление распространения) и рассеяние с изменением длины волны - комптон-эффект (длина волны рассеянного излучения больше, чем падающего). В последнем случае фотон ведет себя как движущийся шарик, а рассеяние фотонов происходит, по образному выражению Комнтона, наподобие игры на бильярде фотонами и электронами: сталкиваясь с электроном, фотон передает ему часть своей энергии и рассеивается, обладая уже меньшей энергией (соответственно длина волны рассеянного излучения увеличивается), электрон вылетает из атома с энергией отдачи (эти электроны называют комптон-электронами, или электронами отдачи). Поглощение энергии рентгеновского излучения происходит при образовании вторичных электронов (комптон - и фотоэлектронов) и передаче им энергии. Энергия рентгеновского излучения, переданная единице массы вещества, определяет поглощенную дозу рентгеновского излучения. Единица этой дозы 1 рад соответствует 100 эрг/г. За счет поглощенной энергии в веществе поглотителя протекает ряд вторичных процессов, имеющих важное значение для дозиметрии рентгеновского излучения, так как именно на них основываются методы измерения рентгеновского излучения. (см. Дозиметрия).

Все газы и многие жидкости, полупроводники и диэлектрики под действием рентгеновского излучения увеличивают электрическую проводимость. Проводимость обнаруживают лучшие изоляционные материалы: парафин, слюда, резина, янтарь. Изменение проводимости обусловлено ионизацией среды, т. е. разделением нейтральных молекул на положительные и отрицательные ионы (ионизацию производят вторичные электроны). Ионизация в воздухе используется для определения экспозиционной дозы рентгеновского излучения (дозы в воздухе), которая измеряется в рентгенах (см. Дозы ионизирующих излучений). При дозе в 1 р поглощенная доза в воздухе равна 0,88 рад.

Под действием рентгеновского излучения в результате возбуждения молекул вещества (и при рекомбинации ионов) возбуждается во многих случаях видимое свечение вещества. При больших интенсивностях рентгеновского излучения наблюдается видимое свечение воздуха, бумаги, парафина и т. п. (исключение составляют металлы). Наибольший выход видимого свечения дают такие кристаллические люминофоры, как Zn·CdS·Ag-фосфор и другие, применяемые для экранов при рентгеноскопии.

Под действием рентгеновского излучения в веществе могут проходить также различные химические процессы: разложение галоидных соединений серебра (фотографический эффект, используемый при рентгенографии), разложение воды и водных растворов перекиси водорода, изменение свойств целлулоида (помутнение и выделение камфоры), парафина (помутнение и отбелка).

В результате полного преобразования вся поглощенная химически инертным веществом энергия рентгеновское излучение превращается в теплоту. Измерение очень малых количеств теплоты требует высокочувствительных методов, зато является основным способом абсолютных измерений рентгеновского излучения.

Вторичные биологические эффекты от воздействия рентгеновского излучения являются основой медицинской рентгенотерапии (см.). Рентгеновские излучения, кванты которых составляют 6-16 кэв (эффективные длины волн от 2 до 5 Å), практически полностью поглощаются кожным покровом ткани человеческого тела; они называются пограничными лучами, или иногда лучами Букки (см. Букки лучи). Для глубокой рентгенотерапии применяется жесткое фильтрованное излучение с эффективными квантами энергии от 100 до 300 кэв.

Биологическое действие рентгеновского излучения должно учитываться не только при рентгенотерапии, но и при рентгенодиагностике, а также во всех других случаях контакта с рентгеновским излучением, требующих применения противолучевой защиты (см.).

Рассмотренные нами соотношения отражают количественную сторону процесса ослабления рентгеновского излучения. Остановимся кратко на качественной стороне процесса, или на тех физических процессах, которые вызывают ослабление. Это, во-первых, поглощение, т.е. превращение энергии рентгеновского излучения в другие виды энергии и, во-вторых, рассеяние, т.е. изменение направления распространения излучения без изменения длины волны (классическое рассеяние Томпсона) и с изменением длины волны (квантовое рассеяние или комптон-эффект).

1. Фотоэлектрическое поглощение . Рентгеновские кванты могут вырывать с электронных оболочек атомов вещества электроны. Их обычно называют фотоэлектронами. Если энергия падающих квантов невелика, то они выбивают электроны с наружных оболочек атома. Фотоэлектронам сообщается большая кинетическая энергия. С увеличением энергии рентгеновские кванты начинают взаимодействовать с электронами, находящимися на более глубоких оболочках атома, у которых энергия связи с ядром больше, чем электронов наружных оболочек. При таком взаимодействии почти вся энергия падающих рентгеновских квантов поглощается, и часть энергии, отдаваемой фотоэлектронам, меньше, чем в первом случае. Кроме появления фотоэлектронов в этом случае испускаются кванты характеристического излучения за счет перехода электронов с вышележащих уровней на уровни, расположенные ближе к ядру.

Таким образом, в результате фотоэлектрического поглощения возникает характеристический спектр данного вещества - вторичное характеристическое излучение. Если вырывание электрона произошло с K-оболочки, то появляется весь линейчатый спектр, характерный для облучаемого вещества.

Рис. 2.5. Спектральное распределение коэффициента поглощения.

Рассмотрим изменение массового коэффициента поглощения t/r, обусловленное фотоэлектрическим поглощением в зависимости от длины волны l падающего рентгеновского излучения(рис.2.5). Изломы кривой называются скачками поглощения, а соответствующая им длина волны - границей поглощения. Каждый скачек соответствует определенному энергетическому уровню атома K, L, M и т.д. При l гр энергия рентгеновского кванта оказывается достаточной для того, чтобы выбить электрон с этого уровня, в результате чего поглощение рентгеновских квантов данной длины волны резко возрастает. Наиболее коротковолновый скачек соответствует удалению электрона с K-уровня, второй с L-уровня, и т.д. Сложная структура L и M-границ обусловлена наличием нескольких подуровней в этих оболочках. Для рентгеновских лучей с длинами волн несколько большими l гр, энергия квантов недостаточна, чтобы вырвать электрон с соответствующей оболочки, вещество относительно прозрачно в этой спектральной области.

Зависимость коэффициента поглощения от l и Z при фотоэффекте определяется как:

t/r = Сl 3 Z 3 , (2.11)

где С - коэффициент пропорциональности, Z - порядковый номер облучаемого элемента, t/r - массовый коэффициент поглощения, l - длина волны падающего рентгеновского излучения.

Эта зависимость описывает участки кривой рис.2.5 между скачками поглощения.

2. Классическое (когерентное) рассеяние объясняет волновая теория рассеяния. Оно имеет место в том случае, если квант рентгеновского излучения взаимодействует с электроном атома, и энергия кванта недостаточна для вырывания электрона с данного уровня. В этом случае, согласно классической теории рассеяния, рентгеновские лучи вызывают вынужденные колебания связанных электронов атомов. Колеблющиеся электроны, как и все колеблющиеся электрические заряды, становятся источником электромагнитных волн, которые распространяются во все стороны.

Интерференция этих сферических волн приводит к возникновению дифракционной картины, закономерно связанной со строением кристалла. Таким образом, именно когерентное рассеяние дает возможность получать картины дифракции, на основании которых можно судить о строении рассеивающего объекта. Классическое рассеяние имеет место при прохождении через среду мягкого рентгеновского излучения с длинами волн более 0,3 Å. Мощность рассеяния одним атомом равна:

p= × ×I 0 , (2.12)

а одним граммом вещества

где I 0 - интенсивность падающего рентгеновского пучка, N - число Авогадро, A - атомный вес, Z - порядковый номер вещества.

Отсюда можно найти массовый коэффициент классического рассеяния s кл /r, поскольку он равен P/I 0 или s кл /r = × × Z .

Подставив все значения, получим s к,л /r = 0,402 .

Так как у большинства элементов Z /A@0,5 (кроме водорода), то

s кл /r » 0,2 , (2.14)

т.е. массовый коэффициент классического рассеяния примерно одинаков для всех веществ и не зависит от длины волны падающего рентгеновского излучения.

3. Квантовое (некогерентное) рассеяние . При взаимодействии вещества с жестким рентгеновским излучением (длиной волны менее 0,3 Å) существенную роль начинает играть квантовое рассеяние, когда наблюдается изменение длины волны рассеянного излучения. Это явление нельзя объяснить волновой теорией, но оно объясняется квантовой теорией. Согласно квантовой теории такое взаимодействие можно рассматривать как результат упругого столкновения рентгеновских квантов со свободными электронами (электронами внешних оболочек). Этим электронам рентгеновские кванты отдают часть своей энергии и вызывают переход их на другие энергетические уровни. Электроны, получившие энергию, называются электронами отдачи. Рентгеновские кванты с энергией hn 0 в результате такого столкновения отклоняются от первоначального направления на угол y, и будут иметь энергию hn 1 , меньшую, чем энергия падающего кванта. Уменьшение частоты рассеянного излучения определяется соотношением:

hn 1 = hn 0 - E отд, (2.15)

где E отд - кинетическая энергия электрона отдачи.

Теория и опыт показывают, что изменение частоты или длины волны при квантовом рассеянии не зависит от порядкового номера элемента Z , но зависит от угла рассеянияy. При этом

l y - l 0 = l = ×(1 - cos y) @ 0,024 (1 - cosy) , (2.16)

где l 0 и l y - длина волны рентгеновского кванта до и после рассеяния,

m 0 - масса покоящегося электрона, c - скорость света.

Из формул видно, что по мере увеличения угла рассеяния, l возрастает от 0 (при y = 0°) до 0,048 Å (при y = 180°). Для мягких лучей с длиной волны порядка 1 Å эта величина составляет небольшой процент примерно 4-5 %. Но для жестских лучей (l = 0,05 - 0,01 Å) изменение длины волны на 0,05 Å означает изменение l вдвое и даже в несколько раз.

Ввиду того, что квантовое рассеяние некогерентно (различно l, различен угол распространения отраженного кванта, нет строгой закономерности в распространении рассеянных волн по отношению к кристаллической решетке), порядок в расположении атомов не влияет на характер квантового рассеяния. Эти рассеянные рентгеновские лучи участвуют в создании общего фона на рентгенограмме. Зависимость интенсивности фона от угла рассеяния может быть теоретически вычислена, что практического применения в рентгеноструктурном анализе не имеет, т.к. причин возникновения фона несколько и общее его значение не поддается легкому расчету.

Рассмотренные нами процессы фотоэлектронного поглощения, когерентного и некогерентного рассеяния определяют, в основном ослабление рентгеновских лучей. Кроме них возможны и другие процессы, например, образование электронно-позитронных пар в результате взаимодействия рентгеновских лучей с ядрами атомов. Под воздействием первичных фотоэлектронов с большой кинетической энергией, а также первичной рентгеновской флюоресценции, возможно возникновение вторичного, третичного и т.д. характеристического излучения и соответствующих фотоэлектронов, но уже с меньшими энергиями. Наконец, часть фотоэлектронов (а частично и электронов отдачи) может преодолевать потенциальный барьер у поверхности вещества и вылетать за его пределы, т.е. может иметь место внешний фотоэффект.

Все отмеченные явления, однако, значительно меньше влияют на величину коэффициента ослабления рентгеновских лучей. Для рентгеновских лучей с длинами волн от десятых долей до единиц ангстрем, используемых обычно в структурном анализе, всеми этими побочными явлениями можно пренебречь и считать, что ослабление первичного рентгеновского пучка происходит с одной стороны за счет рассеяния и с другой – в результате процессов поглощения. Тогда коэффициент ослабления можно представить в виде суммы двух коэффициентов.

m/r = s/r + t/r , (2.17)

где s/r - массовый коэффициент рассеяния, учитывающий потери энергии за счет когерентного и некогерентного рассеяния; t/r - массовый коэффициент поглощения, учитывающий главным образом потери энергии за счет фотоэлектрического поглощения и возбуждения характеристических лучей.

Вклад поглощения и рассеяния в ослабление рентгеновского пучка неравнозначен. Для рентгеновских лучей, используемых в структурном анализе, некогерентным рассеянием можно пренебречь. Если учесть при этом, что величина когерентного рассеяния также невелика и примерно постоянна для всех элементов, то можно считать, что

m/r » t/r , (2.18)

т.е. что ослабление рентгеновского пучка определяется в основном поглощением. В связи с этим для массового коэффициента ослабления будут справедливы закономерности, рассмотренные нами выше для массового коэффициента поглощения при фотоэффекте.

Выбор излучения . Характер зависимости коэффициента поглощения (ослабления) от длины волны определяет в известной мере выбор излучения при структурных исследованиях. Сильное поглощение в кристалле значительно уменьшает интенсивность дифракционных пятен на рентгенограмме. Кроме того, возникающая при сильном поглощении флюоресценция засвечивает пленку. Поэтому работать при длинах волн, несколько меньших границы поглощения исследуемого вещества, невыгодно. Это можно легко понять из схемы рис. 2.6.

1. Если излучать будет анод, состоящий из тех же атомов, как и исследуемое вещество, то мы получим, что граница поглощения, например

Рис.2.6. Изменение интенсивности рентгеновского излучения при прохождении через вещество.

K-край поглощения кристалла (рис.2.6, кривая 1), будет несколько сдвинут относительно его характеристического излучения в коротковолновую область спектра. Этот сдвиг - порядка 0,01 - 0,02 Å относительно линий края линейчатого спектра. Он всегда имеет место в спектральном положении излучения и поглощения одного и того же элемента. Поскольку скачок поглощения соответствует энергии, которую надо затратить, чтобы удалить электрон с уровня за пределы атома, самая жесткая линия K-серии соответствует переходу на K-уровень с наиболее далекого уровня атома. Понятно, что энергия E, необходимая для вырывания электрона за пределы атома, всегда несколько больше той, которая освобождается при переходе электрона с наиболее удаленного уровня на тот же K-уровень. Из рис. 2.6 (кривая 1) следует, что, если анод и исследуемый кристалл - одно вещество, то наиболее интенсивное характеристическое излучение, особенно линии K a и K b , лежит в области слабого поглощения кристалла по отношению к границе поглощения. Поэтому поглощение такого излучения кристаллом мало, а флюоресценция слаба.

2. Если мы возьмем анод, атомный номер которого Z на 1 больше исследуемого кристалла, то излучение этого анода, согласно закону Мозли, несколько сместится в коротковолновую область и расположится относительно границы поглощения того же исследуемого вещества так, как это показано на рис. 2.6, кривая 2. Здесь поглощается K b - линия, за счет чего появляется флюоресценция, которая может мешать при съемке.

3. Если разница в атомных номерах составляет 2-3 единицы Z , то спектр излучения такого анода еще дальше сместится в коротковолновую область (рис. 2.6, кривая 3). Этот случай еще более невыгоден, так как, во-первых, рентгеновские излучения сильно ослаблено и, во-вторых, сильная флюоресценция засвечивает пленку при съемке.

Наиболее подходящим, таким образом, является анод, характеристическое излучение которого лежит в области слабого поглощения исследуемым образцом.

Фильтры . Рассмотренный нами эффект селективного поглощения широко используется для ослабления коротковолновой части спектра. Для этого на пути лучей ставится фольга толщиной несколько сотых мм. Фольга изготовлена из вещества, у которого порядковый номер на 1-2 единицы меньше, чем Z анода. В этом случае согласнорис.2.6 (кривая 2) край полосы поглощения фольги лежит между K a - и K b - линиями излучения и K b - линия, а также сплошной спектр, окажутся сильно ослабленными. Ослабление K b по сравнению с K a - излучением порядка 600. Таким образом, мы отфильтровали b-излучение от a-излучения, которое почти не изменяется по интенсивности. Фильтром может служить фольга, изготовленная из материала, порядковый номер которого на 1-2 единицы меньше Z анода. Например, при работе на молибденовом излучении (Z = 42), фильтром могут служить цирконий (Z = 40) и ниобий (Z = 41). В ряду Mn (Z = 25), Fe (Z = 26), Co (Z = 27) каждый из предшествующих элементов может служить фильтром для последующего.

Понятно, что фильтр должен быть расположен вне камеры, в которой производится съемка кристалла, чтобы не было засветки пленки лучами флюоресценции.


Похожая информация.


Линейчатый (характеристический) рентгеновский спектр

Первое систематическое исследование линейчатых спектров элементов провел Г. Мозли в 1913 г. Он использовал спектрометр Брэгга вакуумного типа. Из каждого исследуемого элемента приготавливалась мишень рентгеновской трубки. Мозли обнаружил, что все исследуемые элементы дают спектры сходного вида (отсюда и часто используемое название спектров - характеристические спектры). Он разделил рентгеновские спектральные линии каждого элемента на две группы, или серии: на группу со сравнительно короткими длинами волн, /Г-серию, и на группу со сравнительно большими длинами волн, L-серию. Серии отделены одна от другой большим интервалом длин волн. Более тяжелые элементы с атомными номерами больше 66 дают также и другие рентгеновские спектральные серии, обозначаемые как М-, N-, 0-серии, с длинами волн, еще большими, чем у L-серии.

Поглощение рентгеновского излучения

Интенсивность рентгеновского излучения при прохождении через образец ослабляется за счет поглощения и рассеяния. Механизм поглощения рентгеновских лучей отличается от механизма оптического поглощения: поглощение энергии рентгеновского излучения происходит в результате единственного процесса - вырывания электронов внутренних оболочек за пределы атома, т. е. в результате ионизации атома за счет внутренних электронов. Энергия поглощаемого излучения превращается в кинетическую энергию выбитых электронов (фотоэлектронов) и потенциальную энергию возбужденного атома, которая равна энергии связи выбитого электрона.

На рисунке 16 представлен качественный вид спектра поглощения рентгеновского излучения. Рентгеновское излучение наименьшей энергии (наибольшей длины волны) вырывает электроны с внешних оболочек. При возрастании энергии излучения всё меньшая ее часть необходима для выбивания электрона из данной

оболочки. Это сопровождается уменьшением поглощения. Монотонное уменьшение поглощения происходит до тех пор, пока энергия излучения не станет достаточной для того, чтобы вырвать электрон из следующей, более глубокой оболочки. Это вызывает резкое увеличение поглощения, соответствующее краю поглощения. Краем поглощения называется резкий скачок поглощения электромагнитного излучения, вызванный тем, что энергии квантов рентгеновского излучения становится достаточно для перевода электрона в возбужденное состояние. На рисунке 16 показаны скачки поглощения, вызванные выбиванием электронов из оболочек и подоболочек L и М и оболочки К.

Другое явление, вызывающее ослабление интенсивности рентгеновского излучения при прохождении через вещество, - рассеяние. Рассеяние происходит в результате столкновения рентгеновского фотона (энергия фотона - hu) с электронами атома (с энергией Е эл).

Если энергия рентгеновских фотонов меньше энергии связи электронов (hu то фотоны не могут выбить электрон из данной внутренней оболочки. В результате упругого столкновения с закрепленными электронами фотоны лишь изменяют направление (рассеиваются); их энергия и соответственно длина волны остаются прежними. Рассеяние, при котором длина волны не изменяется, называется когерентным (томеоновским) раесеянием. Оно составляет основу рентгеновской дифракции, используемой в структурном анализе.

Если же энергия рентгеновских фотонов больше энергии связи электронов (hu > Е эл), то фотоны вырывают электрон из соответствующей внутренней оболочки, но при столкновении с электронами передают им часть своей энергии. В результате рассеивающиеся фотоны обладают меньшей энергией и большей длиной волны. Это рассеяние с изменением длины волны называется некогерентным (комптоновским) раеееянием. Поскольку выбивание электрона является первым условием возникновения всех рентгеновских и электронных спектров, именно некогерентиое рассеяние сопровождает их возникновение. Но так как в атоме имеются одновременно более и менее сильно связанные электроны (более глубокие и менее глубокие внутренние оболочки), то в спектре рассеянного излучения можно наблюдать две линии - с неизмененной и с измененной (увеличенной) длиной волны.

Интенсивность рассеяния увеличивается с атомным номером: чем больше в атоме электронов, тем большую интенсивность рассеяния они вызывают, т. е. рентгеновские лучи слабо рассеиваются легкими атомами и сильно - тяжелыми.

Количественная оценка уменьшения интенсивности рентгеновских лучей при прохождении через вещество производится с помощью коэффициента ослабления д, представляющего собой сумму коэффициента чистого (фотоэлектрического) поглощения т и коэффициента рассеяния а. Часто коэффициент ослабления называют коэффициентом поглощения, имея в виду его двухчленное содержание. При длинах волн более 0,5 А и для элементов с Z > 26 ослабление практически полностью обусловливается поглощением

Линейный коэффициент ослабления (поглощения) /ц, измеряемый в см -1 , может быть определен из закона Вера:

устанавливающего экспоненциальную зависимость уменьшения интенсивности любого излучения от толщины образца. Линейный коэффициент поглощения вычисляется логарифмированием (29):

Линейный коэффициент ослабления (30) используется для оценки прозрачности или непрозрачности образца при данной толщине образца и для данного излучения. Поскольку коэффициент д/ зависит от состояния вещества (твердого, жидкого, газообразного), он не является константой, характеризующей поглощение данного элемента. Его величина зависит от атомного номера поглощающего вещества и длины волны рентгеновского излучения.

Чаще пользуются массовым коэффициентом ослабления (поглощения)

где р - плотность (г/см 3), т. е. д имеет размерность см 2 /г. Введение массовых коэффициентов оказывается удобным, так как их характерной особенностью является независимость от агрегатного состояния вещества. Так, д имеет одинаковое значение для воды, водяного пара и льда. Кроме того, отпадает необходимость в определении коэффициентов ослабления для всего множества различных веществ. Это возможно потому, что поглощение и рассеяние осуществляются в основном внутренними электронами атомов, состояние которых не зависит от того, в состав какого вещества входит атом того или иного элемента. По этой причине в справочных таблицах обычно приводятся значения массовых коэффициентов ослабления ц для атомов различных элементов и для различных длин волн рентгеновских лучей. Например, массовый коэффициент поглощения алюминия в излучении SrК а (Л = 0, 876 А) обозначается как До,876 или /ЩгК а. Таблицы значений д для важнейших К а1 ~, Kg-, L a - и других линий излучения элементов опубликованы.

В предыдущем разделе мы остановились на фотоэлектронном поглощении. Это один из трех процессов, приводящих к ослаблению пучка высокоэнергетичных фотонов, проникающих в твердое тело: рождение фотоэлектронов, комптоновское рассеяние и рождение пар. При эффекте Комптона рентгеновское излучение рассеивается электронами поглощающего материала. Это приводит к существованию помимо первоначального излучения с длиной волны X компоненты с увеличенной длиной волны (меньшей энергией). Эта задача обычно решается как столкновение фотона с импульсом с покоящимся электроном с энергией покоя . После рассеяния на угол в длина волны фотона сдвинется в сторону больших длин волн на величину , где принято называть комптоновской длиной волны электрона.

Если энергия фотона превышает , фотон может поглотиться с образованием электрон-позитронной пары. Этот процесс называется рождением пары. Каждый из этих трех процессов, фотоэлектронное рассеяние, комптоновское рассеяние и образование пар, преобладает в определенной области энергий фотонов, как показано на рис. 8.3. В случае рентгеновского и низкоэнергетического гамма-излучений главный вклад в поглощение излучения в веществе дает фотоэлектронный эффект. Атомным процессам в материаловедении соответствует именно этот энергетический интервал.

Интенсивность I рентгеновского излучения, прошедшего через тонкую пленку вещества, подчиняется экспоненциальному закону убывания от начального значения :

где р - плотность твердого тела (в г/см3), - линейный коэффициент поглощения, - массовый коэффициент поглощения, измеряемый в .

Рис. 8.3. Относительный вклад трех важнейших типов взаимодействия в поглощение фотонов. Линиями показаны величины Z и , для которых соседние эффекты равны. I - преобладание фотоэффекта; II - преобладание комптоновского рассеяния; III - преобладание рождения пар.

Рис. 8.4. Зависимость массового коэффициента поглощения от .

Зависимость массового коэффициента поглощения в от длины волны рентгеновского излучения показана на рис. 8.4. Сильная зависимость коэффициента поглощения следует из энергетической зависимости для сечения фотоэффекта. Вблизи -края поглощения фотоны выбивают электроны из -оболочки. Для длин волн, больших, чем -край, преобладает поглощение за счет фотоэлектронного процесса на -оболочках; при более коротких длинах волн, когда преобладает фотоэлектронное поглощение на -оболочках.

Как рентгеновская фотоэлектронная спектроскопия (обсуждаемая в гл. 9), так и рентгеновское поглощение определяются фотоэлектрическим эффектом. Экспериментальные схемы этих методик приведены на рис. 8.5 (рентгеновская фотоэлектронная спектроскопия проиллюстрирована на левой половине рисунка, рентгеновское поглощение - на правой). В рентгеновской фотоэлектронной спектроскопии связанный электрон, например -оболочки, показанный на рис. 8.5, переводится в свободное состояние. Поскольку кинетическая энергия фотоэлектрона является вполне определенной, в спектре фотоэлектронов возникают острые фотопики. Когда связанный электрон переводится на первый незанятый уровень, переход на который разрешен правилами отбора, в спектрах рентгеновского поглощения наблюдаются полосы поглощения. В металлических образцах такой незанятый уровень расположен на уровне Ферми или непосредственно над ним. При измерениях рентгеновского поглощения исследуется зависимость поглощения, тогда как в случае рентгеновской фотоэлектронной спектроскопии образец облучают фотонами постоянной энергии, измеряя кинетическую энергию электронов.

Массовый коэффициент поглощения для электронов на заданных оболочках или подоболочках может быть рассчитан через поперечное сечение а фотоэффекта:

(см. скан)

Рис. 8.5. Сопоставление рентгеновской фотоэлектронной спектроскопии (I) и рентгеновского поглощения (II) . I - рентгеновская трубка; 2 - образец; 3 - детектор.

где р - плотность; N - концентрация атомов; - число электронов в оболочке. Например, для излучения , падающего на никель, в котором энергия связи -оболочки равна 8,33 кэВ, величина сечения фотоэффекта на один -электрон равна

Плотность атомов в равна при удельной плотности . Массовый коэффициент поглощения на -оболочке равен

В этих расчетах вклад -оболочек не учитывался. При энергиях фотонов, превышающих энергию связи К-оболочки, сечение фотоэффекта для -оболочек имеет величину по крайней мере на порядок меньшую, чем для -оболочки; это является основной причиной резкого возрастания поглощения при переходе К-края поглощения. Из-за сильной зависимости сечения фотоэффекта от энергии связи в рассматриваемом здесь случае линии оно на множитель меньше для электронов -оболочки, чем для -оболочки, если предположить, что средняя энергия связи и -оболочек равна

Рассчитанная величина превышает измеренную 47,24 (приложение ). Слабым местом расчетов массового коэффициента поглощения, выполненных выше, являлось то, что энергия Е излучения всего в 2 раза превышает энергию связи -оболочки тогда как при выводе выражения (8.37) предполагалось . В случае излучения энергия фотона примерно в 10 раз превышает энергию связи -оболочки, и рассчитанное сечение фотоэффекта приводит к величине поглощения близкой к табличному значению .

Измеренные величины массового коэффициента поглощения для излучения различных материалов даны в приложении и показаны на рис. 8.6 для . Коэффициент поглощения для заданного элемента может меняться на 2 порядка по величине в зависимости от длины волны падающего излучения. Сильная зависимость коэффициента поглощения от энергии фотона показана на рис. 8.6, б.