Всё, что изготавливают из стали, можно найти на портале. Сталь: классификация, особенности и описание разновидностей сплава Сталь изобретение

Берет начало с тех времен, когда на земле появилось человечество. За все это время сделано огромное множество замечательных открытий и изобретений. Но способы добычи стали по праву можно назвать главным среди всех изобретений, среди всех открытий. Автор фото: Сергей Богомяко Это благодаря стали человек стал могущественным, способным сдвигать горы и поворачивать реки, смог покорить океаны и небесные выси. Тысячелетия отделяют нас от того времени, когда впервые был получен этот поистине чудесный материал. Изготовление некоторых видов стали долгое время было в секрете. Так на протяжении столетий существовала , которую смогли разгадать только в XIX столетии, (подробнее: ). В наши дни мощь и богатство любой страны определяются в первую очередь тем, сколько стали выплавляют ее заводы.

Добыча руды

Для производства стали прежде добывают руду и топливо. Но, даже имея в достаточном количестве и каменный уголь, (подробнее: ) нельзя еще приступать к изготовлению стали. И руду и уголь необходимо по-особому приготовить. Руду обогатить, из каменного угля сделать кокс.

Обогащение руды

Долгий и сложный путь проделывает руда, прежде чем превратится в сталь. И первый этап на этом пути – обогащение руды на обогатительная фабрика. Сначала руду дробят с помощью машин, которые так и называются дробилками . Первая, самая мощная, раскалывает крупные глыбы на куски. Затем вторая превращает эти куски в щебень и так далее. До тех пор, пока из руды не получится крупа. Но и этого еще не полное обогащение. Далее отправляют руду на мельницу и превращают ее в порошок. И только теперь начинается то, что металлурги называют обогащением, – отделение руды от сопутствующей породы, с которой она вместе лежала в земле. Происходит это так. Порошок смешивают с водой и пропускают между магнитами. Магниты и выбирают из мутного потока частицы магнитного железняка. А то, что не нужно, – это уже не трудно догадаться, – уносится водой. Но даже такая отобранная руда еще не пригодна для дальнейшей переработки. Содержание железа в ней значительно повысилось. Однако и это еще не все. Руду снова надо превратить из порошка в куски. Для этого порошок смешивают с коксом, известью и сильно нагревают.

Кокс

Для выплавки стали главным топливом служит каменный уголь . Но не в том виде, который добывают шахтеры. Добытый уголь содержит много примесей, которые могут вредно повлиять на будущий металл. И поэтому их необходимо удалить. Уголь, как и руду, для этого сначала размалывают в тончайший порошок. Потом этот порошок в специальной камере нагревают без доступа воздуха. Из угля выделяются газ и смола. Вместе с ними уходят и другие ненужные примеси. А сам угольный порошок спекается в плотную пористую массу. Пышущую жаром массу выталкивают из камеры на металлическую платформу и охлаждают водой. От резкого охлаждения масса разваливается на куски. Эти куски и есть кокс . Вот теперь и руда и топливо подготовлены. Можно приступать к плавке. Но пока еще не к плавке стали. Прежде чем железная руда превратится в сталь, ей еще предстоит стать чугуном . Этот процесс происходит в домне . Домна – это печь-гигант. Даже десятиэтажный дом не кажется очень большим рядом с такой печью. Горит эта печь непрерывно в течение десятков лет. Металлурги время от времени загружают в нее руду, кокс и известь – она тоже во время плавки необходима, – и выпускают готовый чугун. Какие процессы происходят в домне, как руда превращаться в чугун? Чтобы разобраться в этом, надо снова вернуться к железной руде.

Чугун

Железная руда – это окисленный металл, т.е. соединение железа с кислородом. Для получения чистого металла необходимо вести борьбу с кислородом. Эта борьба начинается, когда металлурги загружают в домну руду и кокс. При высокой температуре кислород соединяется с углеродом кокса и расстается с железом . Получается углекислый газ . А оставшийся углерод тут же занимает место кислорода и соединяется с железом. Железо плюс углерод – это и есть чугун .
Чтобы ускорить плавку, в металлурги стали использовать кислород против кислорода. Для того чтобы жарче горело пламя, в домну накачивают не просто воздух, а чистый кислород. Современные домны работают на природном газе. А это не только ускоряет плавку, но и значительно сокращает расход кокса. Что дает возможность получать более дешевый чугун.

Путь удешевления металла

Металлургия прошла еще один путь удешевления металла . Путь этот – замена дорогого человеческого труда трудом машин. Если раньше все работы по обслуживанию домны в основном выполнялись вручную, теперь в помощь металлургам пришли транспортеры, погрузочные механизмы, подъемные краны . Многие операции вообще выполняются без участия человека. Их выполняют автоматы. В настоящее время домна работает почти совсем без помощи людей. Все процессы автоматизированы. Автоматика принимает от приборов сообщения о качестве руды и кокса и отдает команду механизмам-исполнителям, сколько надо отвесить и загрузить в печь того и другого. Потом она проверяет температуру в печи. Если надо, добавит или убавит кислорода, газа. К желобу, по которому из печи выпускают металл, подъедет железнодорожная платформа с ковшами. Специальная бурильная машина рассверливает отверстие для слива металла, оно называется леткой. А закрывают леточное отверстие с помощью специальной пушки. Посредством поршневого механизма подается огнеупорная масса, которой и закрывается канал после слива чугуна. Сразу же после слива металла начинается загрузка шихтового материала через колошник – верхнюю часть печи, ведь плавка в домне идет непрерывно.

Сталь

Речь идет о том, как руда превращается в сталь . Ведь чугун, первая ступень на пути этого превращения. Но чем отличается чугун от стали, ведь это тоже металл? Чугун нельзя ковать, трудно обрабатывать на металлорежущих станках. И это потому, что в нем очень много углерода. А углерод – вещество хотя и очень твердое, но хрупкое. Вот и железо, соединившись с ним в доменной печи, стало очень хрупким. Другое дело – сталь. Она и ковке поддается – ее можно штамповать, придавать стальным листам разную форму. Ее и на станках обрабатывают, вытачивают всевозможные детали. Чугун так же необходим в производстве. Из него отливают те изделия, которые потом не требуют тщательной обработки. Например, станины, на которых станки стоят, маховики для моторов, трубы. Но основная часть чугуна, идет в дальнейшую переработку – на изготовление стали .

Мартеновские печи

Один за другим наполнились ковши – чугуновозы, и состав отправляется в цех, где выстроились в ряд мартеновские печи . Что такое мартеновские печи? Здесь уже знакомый нам чугун снова попадает в пламень. Правда, не сразу. Такое количество чугуна, которое прислала сюда домна, мартены переработать сразу не могут. Их в цехе много, но они значительно меньше домны. Поэтому чугун сначала попадает в термосы. Здесь, в мартеновском цехе, их называют миксерами . Их задача: не дать чугуну охладиться, сохранить его жидким. Отсюда по мере необходимости и берут его сталевары для заливки в мартены. Не просто сварить сталь. Тем, кто это делает, не только многое уметь надо, но и очень многое знать. Ведь это от них зависит, какая сталь выйдет из мартена – прочная ли и упругая, из которой потом изготовят рельсы для поездов и самые ответственные детали машин, или мягкая, которая пойдет, к примеру, на изготовление листов для крыши. Каждую марку стали варят в мартенах по особой технологии. Тут и металлолом, и цветная руда, и марганец, и никель, и хром и многое-многое другое требуется. А главное, конечно, чугун. Началась загрузка печи. Подъемные краны одну за другой подхватывают многотонные коробки – мульды, заносят в печь и высыпают содержимое. Называется эта операция завалкой печи. Но вот опрокинут последний короб. Все сильней бушует в печи пламя. Бригадир смотрит на приборы. Металлолом, известь и руда достаточно прогрелись. Настал момент заливать чугун. Его уже привезли из миксеров, он стоит тут и нестерпимо пышет жаром. Стальная рука крана подхватывает ковш и выливает расплавленный чугун в огнедышащую пасть мартена. Варка стали началась. Теперь все зависит от сталевара, от его умения, опыта.
Автор фото: Сергей Богомяко Конечно, современному сталевару верно служит техника. Она вооружила его разными приборами. Они подробно сообщают ему о том, что делается в печи, но нет-нет да и опустит бригадир на глаза защитные очки, заглянет через специальное отверстие в клокочущее нутро мартена. Время от времени посылают сталевары пробы металла в специальную лабораторию. Очень быстро работает лаборатория. Ее даже за скорость на металлургических заводах называют «экспресс-лабораторией». Так скоро сообщает она тем, кто стоит у мартенов, сколько в данный момент углерода, серы, фосфора и других элементов в металле. Но вот проходит положенный срок, взята последняя проба, по всему цеху разнесся по радио результат последнего анализа – металл готов. Словно солнце вспыхивает в цехе. Поток металла устремляется в изложницы. Но что же произошло в мартене? Почему чугун превратился в сталь? Чтобы это понять, вспомним, что произошло с рудой в домне. Там, железо рассталось с кислородом. Его место занял углерод. В мартене из чугуна удаляют часть углерода. Он сгорает в кислороде воздуха, который непрерывно подают в печь автоматы. И чем больше выгорает углерода, тем более вязкой, более мягкой выходит из печи сталь. А если от нее требуются какие-то основные качества, их придадут ей специальные добавки – марганец, хром, кремний. Словом, то, что положено по технологии для данной марки стали. Технике нужна разная сталь. И сталевары выполняют все ее запросы. Сталь сварена. Выпущенная из мартена, она попала в изложницы. Здесь она постепенно охладилась и застыла. Но изложницы – это огромные ванны. И когда сталь вынимают из них, получаются слитки металла в несколько тонн весом. Поэтому сталь сначала превращают в бруски, удобные для работы. Делают это на специальных обжимных станах. Их называют блюмингами . Современный блюминг – очень большая и сложная машина. Она похожа на длинную роликовую дорогу. Заранее разогретые огромные слитки металла с большой скоростью проносятся по ней. По пути они попадают в стальные валки. Эти валки со всех сторон обжимают слитки и превращают их в бруски нужных размеров.
Автор фото: Сергей Богомяко И только после этого бруски отправляют на прокатные станы, где из них делают рельсы, балки, трубы, стальные листы или толстые и тонкие прутки. Все, что необходимо.

Кислородно-конвертерный способ

Кроме мартеновского способа производства стали на современном этапе существует кислородно-конвертерный способ с комбинированной продувкой. Процесс получения стали из чугуна этим способом происходит без затрат топлива. В конвертере происходит продувка чугуна чистым кислородом. Чугун окисляется, происходит выделение тепла, сгорают ненужные примеси и, как результат, происходит раскисление металла. История производства стали непростая. Чтобы выйти на современный уровень, было пройдено много этапов. От слитка металла полученного на костре и поковки в кузне, до современных сталеплавильных заводов с прокатными и механическими цехами.

Сталь – это сплав железа с углеродом. Сталь в быту иногда называют железом. Но железо – это только исходный материал для получения стали.

В VII в. до нашей эры кельты умели выплавлять железо из железной руды. Для нагревания руды они использовали пламя древесного угля в открытой печи. В результате получали чугун, содержащий большое количество углерода. Но чугун невозможно ковать, так как он хрупкий. А если уменьшить содержание углерода в сплаве, то получится сталь. Ведь основное отличие чугуна и стали – процентное содержание углерода. В стали углерода менее 2,14%, а в чугуне его содержится значительно больше. Для улучшения качества стали в неё добавляют легирующие элементы. Легированной сталью называют сплав железа, углерода и легирующих элементов, в котором железа содержится не менее 45%.

История изобретения стали

Кричный передел

Кричный горн

Чтобы улучшить качество чугуна, из него удаляли избыточное количество углерода методом кричного передела . Этот процесс происходил в кричном горне – открытой печи, в которой чушки чугуна помещали прямо на горящий древесный уголь. Расплавленный чугун очищался от излишков углерода вдуванием горячего воздуха. Далее он скапливался на поду горна. Окислительное действие железистого шлака приводило к дополнительному обезуглероживанию. Образовывалась кашица, которая называлась крица . Далее крица подвергалась ковке, чтобы выжать шлак. Кричный передел возник в XIV в. В XVIII в. его заменил метод пудлингования.

Пудлингование

Пудлинговая печь

Шагом вперёд в технологии получения стали стало пудлингование . В процессе пудлингования расплавленный чугун очищался от углерода. Технологию процесса пудлингования разработал английский металлург Генри Корт в 1784 г. В отличие от метода кричного передела, в этом процессе чугун расплавляли в специальной пудлинговой печи, где чугун не контактировал с топливом. Расплавленный металл перемешивали специальными штангами, на которые налипали частицы металла. Постепенно формировалась тестоподобная крица. Полученную крицу проковывали, чтобы получить необходимую деталь. Основным отличием пудлинговой печи от кричного горна была возможность заменить дорогой древесный уголь другими видами топлива.

Бессемеровский способ получения стали

Конвертер Бессемера

Во второй половине XIX в. машиностроение начало развиваться быстрыми темпами. Строились железные дороги, вместо деревянных парусных судов появились стальные паровые суда. Всё это требовало большого количества металла. Спрос на сталь возрастал. А получение стали методом пудлингования было очень медленным, трудоёмким и дорогим. Особенно узким местом в получении стали была ковка. Многие учёные думали над тем, как получить жидкую сталь, чтобы использовать её для отливки.

Эту задачу решил английский инженер Генри Бессемер в 1854 г.

В те времена дальнобойные орудия изготавливались из чугуна. Так как они должны были выдерживать большое количество выстрелов, то и качество чугуна должно было быть высоким. Бессемер работал над улучшением качества чугуна. Он обнаружил, что во время плавки чугуна восстановленное железо раньше всего появляется у воздуходувных труб. Бессемер попытался получить сталь, продувая воздух через расплавленный чугун. И вскоре он получил сталь отличного качества. Далее Бессемер понял, что не нужно вводить в технологический процесс тепло извне. Чугун содержит горючие примеси: углерод, кремний, марганец. При горении они повышают температуру плавки. В результате получается жидкая сталь.

В 1856 г. конвертер для получения жидкой стали был продемонстрирован Бессемером.

Как же устроен конвертер Бессемера?

Чугун, выходящий из доменной печи, заливается в конвертер – резервуар, имеющий на дне отверстия для подвода воздуха. Конвертер закрепляется на подвижных опорах, поэтому он легко переводится из горизонтального в вертикальное положение после того, как будет наполнен. Через отверстия в дне вдувается воздух. Кислород воздуха соединяется с углеродом, находящимся в чугуне. Конвертер переводится в горизонтальное положение, когда процесс закончится и в конвертере образуется железо. После этого в железо добавляют примеси, содержащие углерод. Происходит дальнейшее окисление железа. В результате образуется сталь с низким процентом углерода. Этот процесс протекает очень быстро. В течение 10 минут можно превратить в сталь 10 т чугуна.

Метод Бессемера позволил производить сталь в неограниченных объёмах.

Сталь является одним из самых распространенных материалов на сегодняшний день. Она представляет собой сочетание железа и углерода в определенном процентном соотношении. Существует огромное количество разновидностей этого материала, так как даже незначительное изменение химического состава приводит к изменению физико-механических качеств. Сырье для производства стали сегодня представлено отработанными стальными изделиями. Также было налажено производство конструкционной стали из чугуна. Страны-лидеры в металлургической промышленности проводят выпуск заготовок согласно стандартам, установленным в ГОСТ. Рассмотрим особенности производства стали, а также применяемые методы и то, как проводится маркировка полученных изделий.

Особенности процесса производства стали

В производстве чугуна и стали применяются разные технологии, несмотря на достаточно близкий химический состав и некоторые физико-механические свойства. Отличия заключаются в том, что сталь содержит меньшее количество вредных примесей и углерода, за счет чего достигаются высокие эксплуатационные качества. В процессе плавки все примеси и лишний углерод, который становится причиной повышения хрупкости материала, уходят в шлаки. Технология производства стали предусматривает принудительное окисление основных элементов за счет взаимодействия железа с кислородом.

Рассматривая процесс производства углеродистой и других видов стали, следует выделить несколько основных этапов процесса:

  1. Расплавление породы. Сырье, которое используется для производства металла, называют шихтой. На данном этапе при окислении железа происходит раскисление и примесей. Уделяется много внимания тому, чтобы происходило уменьшение концентрации вредных примесей, к которым можно отнести фосфор. Для обеспечения наиболее подходящих условий для окисления вредных примесей изначально выдерживается относительно невысокая температура. Формирование железного шлака происходит за счет добавления железной руды. После выделения вредных примесей на поверхности сплава они удаляются, проводится добавление новой порции оксида кальция.
  2. Кипение полученной массы. Ванны расплавленного металла после предварительного этапа очистки состава нагреваются до высокой температуры, сплав начинает кипеть. За счет кипения углерод, находящийся в составе, начинает активно окисляться. Как ранее было отмечено, чугун отличается от стали слишком высокой концентрацией углерода, за счет чего материал становится хрупким и приобретает другие свойства. Решить подобную проблему можно путем вдувания чистого кислорода, за счет чего процесс окисления будет проходить с большой скоростью. При кипении образуются пузырьки оксида углерода, к которым также прилипают другие примеси, за счет чего происходит очистка состава. На данной стадии производства с состава удаляется сера, относящаяся к вредным примесям.
  3. Раскисление состава. С одной стороны, добавление в состав кислорода обеспечивает удаление вредных примесей, с другой, приводит к ухудшению основных эксплуатационных качеств. Именно поэтому зачастую для очистки состава от вредных примесей проводится диффузионное раскисление, которое основано на введении специального расплавленного металла. В этом материале содержатся вещества, которые оказывают примерно такое же воздействие на расплавленный сплав, как и кислород.

Кроме этого, в зависимости от особенностей применяемой технологии могут быть получены материалы двух типов:

  1. Спокойные, которые прошли процесс раскисления до конца.
  2. Полуспокойные, которые имеют состояние, находящееся между спокойными и кипящими сталями.

При производстве материала в состав могут добавляться чистые металлы и ферросплавы. За счет этого получаются легированные составы, которые обладают своими определенными свойствами.

Способы производства стали

Существует несколько методов производства стали, каждый обладает своими определенными достоинствами и недостатками. От выбранного способа зависит то, с какими свойствами можно получить материал. Основные способы производства стали:

  1. Мартеновский метод. Данная технология предусматривает применение специальных печей, которые способны нагревать сырье до температуры около 2000 градусов Цельсия. Рассматривая способы производства легированных сталей, отметим, что этот метод также позволяет проводить добавление различных примесей, за счет чего получаются необычные по составу стали. Мартеновский метод основан на применении специальных печей.
  2. Электросталеплавильный метод. Для того чтобы получить материал высокого качества проводится производство стали в электропечах. За счет применения электрической энергии для нагрева сырья можно точно контролировать прохождение процесса окисления и выделения шлаков. В данном случае важно обеспечить появление шлаков. Они являются передатчиком кислорода и тепла. Данная технология позволяет снизить концентрацию вредных веществ, к примеру, фосфора и серы. Электрическая плавка может проходить в самой различной среде: избыточного давления, вакуума, при определенной атмосфере. Проводимые исследования указывают на то, что электросталь обладает самым высоким качеством. Применяется технология для производства качественных высоколегированных, коррозионностойких, жаропрочных и других видов стали. Для преобразования электрической энергии в тепловую применяется дуговая печь цилиндрической формы с днищем сферического типа. Для обеспечения наиболее благоприятных условий плавки внутреннее пространство отделывается при использовании жаропрочного металла. Работа устройства возможна только при подключении к трехфазной сети. Стоит учитывать, что сеть электрического снабжения должна выдерживать существенную нагрузку. Источником тепловой энергии становится электрическая дуга, возникающая между электродом и расплавленным металлом. Температура может быть более 2000 градусов Цельсия.
  3. Кислородно-конвертерный. Непрерывная разливка стали в данном случае сопровождается с активным вдуванием кислорода, за счет чего существенно ускоряется процесс окисления. Применяется этот метод изготовления и для получения чугуна. Считается, что данная технология обладает наибольшей универсальностью, позволяет получать металлы с различными свойствами.

Способы производства оцинкованной стали не сильно отличаются от рассматриваемых. Это связано с тем, что изменение качеств поверхностного слоя проходит путем химико-термической обработки.

Существуют и другие технологии производства стали, которые обладают высокой эффективностью. Например, методы, основанные на применении вакуумных индукционных печей, а также плазменно-дуговой сварки.

Мартеновский способ

Суть данной технологии заключается в переработке чугуна и другого металлолома при применении отражательной печи. Производство различной стали в мартеновских печах можно охарактеризовать тем, что на шихту оказывается большая температура. Для подачи высокой температуры проводится сжигание различного топлива.

Рассматривая мартеновский способ производства стали, отметим нижеприведенные моменты:

  1. Мартеновские печи оборудованы системой, которая обеспечивает подачу тепла и отвода продуктов горения.
  2. Топливо подается в камеру сгорания поочередно, то с правой, то с левой стороны. За счет этого обеспечивается образование факела, который и приводит к повышению температуры рабочей среды и ее выдерживание на протяжении длительного периода.
  3. На момент загрузки шихты в камеру сгорания попадает достаточно большое количество кислорода, который и необходим для окисления железа.

При получении стали мартеновским способом время выдержки шихты составляет 8-16 часов. На протяжении всего периода печь работает непрерывно. С каждым годом конструкция печи совершенствуется, что позволяет упростить процесс производства стали и получить металлы различного качества.

В кислородных конвертерах

Сегодня проводится производство различной стали в кислородных конвертерах. Данная технология предусматривает продувку жидкого чугуна в конвертере. Для этого проводится подача чистого кислорода. К особенностям этой технологии можно отнести нижеприведенные моменты:

  1. Конвертор – специальное оборудование, которое представлено стальным сосудом грушевидной формы. Вместительность подобного устройства составляет 100-350 тонн. С внутренней стороны конструкция выкладывается огнеупорным кирпичом.
  2. Конструкция верхней части предполагает горловину, которая необходима для загрузки шихты и жидкого чугуна. Кроме этого, через горловину происходит удаление газов, образующихся в процессе плавления сырья.
  3. Заливка чугуна и добавление другой шихты проводится при температуре около 1400 градусов Цельсия. Для того чтобы обеспечить активное окисление железа чистый кислород подается под давлением около 1,4 МПа.
  4. При подаче большого количества кислорода чугун и другая шихта окисляется, что становится причиной выделения большого количества тепла. За счет сильного нагрева происходит расплавка всего шихтового материала.
  5. В тот момент, когда из состава удаляется излишек углерода, продувка прекращается, фурма извлекается из конвертора. Как правило, продувка продолжается в течение 20 минут.
  6. На данном этапе полученный состав содержит большое количество кислорода. Именно поэтому для повышения эксплуатационных качеств в состав добавляют различные раскислители и легирующие элементы. Образующийся шлак удаляется в специальный шлаковый ковш.
  7. Время конверторного плавления может меняться, как правило, оно составляет 35-60 минут. Время выдержки зависит от типа применяемой шихты и объема получаемой стали.

Кислородно-конвертерный способ

Стоит учитывать, что производительно подобного оборудования составляет порядка 1,5 миллионов тонн при вместительности 250 тонн. Применяется данная технология для получения углеродистых, низкоуглеродистых, а также легированных сталей. Кислородно-конвертерный способ производства стали был разработан довольно давно, но сегодня все равно пользуется большой популярностью. Это связано с тем, что при применении этой технологии можно получить качественные металлы, а производительность технологии весьма высока.

В заключение отметим, что в домашних условиях провести производство стали практически невозможно. Это связано с необходимостью нагрева шихты до достаточно высокой температуры. При этом процесс окисления железа весьма сложен, как и удаления вредных примесей

Создание нержавеющей стали

Возможно, как только вы услышите этот вопрос, на вашем лице появится ухмылка и вы скажете себе: «Это Гарри Брайрли ! Несомненно, это он». Конечно, на самом деле всё может быть не так уж и просто.

С самого рассвета человечества люди наперегонки пытались открыть новые технологии, стать первыми, чьё имя будет связано с открытием. И хотя за миллионы лет мы значительно развились, в нас всё ещё живёт желание быть первыми в чём-то.

Некоторые люди, разумеется, часто пытаются выдать чужое открытие за своё собственное. Конечно, часть открытий делаются группами, или же разные люди делают их одновременно. Но до тех пор, пока кто-то один не сможет доказать, что именно он что-то открыл, всегда найдутся желающие это оспорить.

Итак, нержавеющая сталь ...

Первая проблема с определением понятия «изобретатель» заключается в том, что не до конца понятно, кто им считается. Должен ли это быть тот человек, который первым задокументировал явление изобретения? Запатентовал? Или же тот, кто, собственно, что-то изобрёл? Вторая проблема - то, что определение нержавеющей стали до 1911 года не было окончательно сформулировано. Поэтому, видимо, нам не стоит учитывать те хромово-алюминиевые сплавы, которые не содержат необходимые 10,5% хрома.

"Изобретатели" нержавейки объявлялись в самых разных странах: в Британии, Германии, Франции, Польше, США и даже в Швеции.

Всё началось благодаря англичанам Стоддарду и Фарадею и французу Пьеру Бертьё около 1820-1821 годов. Эти учёные, кроме всего прочего, заметили, что сплавы железа с хромом были устойчивы к воздействию на них некоторых кислот. Однако они проводили испытания только со сплавами с малой долей хрома. Попытки произвести сплавы с большей его долей провалились из-за того, что учёные не понимали важности малого содержания углерода.

В 1872 году другая пара британских учёных, Вудс и Кларк , подали запрос на патент на сплав железа, устойчивый к погодным условиям и кислотам, содержащий 30-35% хрома и 2% вольфрама. Несмотря на это, они не занялись созданием этого сплава. Это начал лишь в 1875 году француз по имени Брюстлейн , который понял важность малого содержания углерода для успешного произведения нержавеющей стали. Он установил, что процент углерода не должен превышать 0,15%.

На протяжении следующих 20 лет продолжался процесс застоя в исследовании способов производства нержавейки, когда никто из учёных в этом не преуспел.

Только в 1895 году Ганс Гольдшмидт из Германии разработал процесс алюминотермии для производства хрома, не содержащего углерод. Тогда производство нержавеющей стали стало возможным.

В 1904 году французский учёный Леон Гуллит провёл глубокое исследование разных железо-хромовых сплавов. Его работа положила основу тому, что сейчас известно как стандарты нержавеющей стали 410, 420, 442, 446 и 440 по стандарту AISI (Американского института стали и сплавов).

В 1909 году британец Гиссен опубликовал работу по изучению никелево-хромовых сплавов. Тогда же житель Франции А. Портевин изучал то, что сейчас называется нержавеющей сталью стандарта 430 AISI.

Только в 1911 немцы П. Моннарц и В. Борчерс установили взаимосвязь между содержанием хрома и устойчивости к коррозии. Они заметили, что при наличии как минимум 10,5% хрома в сплаве устойчивость к ней значительно увеличивается. Также они опубликовали работы о влиянии молибдена на устойчивость к коррозии.

И здесь в истории изобретения нержавейки появляется новое имя. Гарри Брайрли , рождённый в г. Шеффилде в Англии в 1871 году. Он был назначен ведущим исследователем в фирме Brown Firth Laboratories в 1908 году. В 1912 году он получил от небольшой фирмы, производящей оружие, заказ на нахождение способа продлить срок жизни оружейных стволов, производимых этой фирмой. Проблема заключалась в том, что они разрушались слишком быстро из-за эрозии. Брайрли поставил перед собой цель создать сталь, устойчивую к эрозии, а не к коррозии. Пока он экспериментировал, Брайрли создал несколько видов сплавов, содержащих от 6% до 15% хрома и разные доли углерода.

13 августа 1913 года Брайрли создал сталь с содержанием 12,8% хрома и 0,24% углерода, которая считается первой в мире нержавеющей сталью . Сам процесс обнаружения им подобных свойств у полученного сплава точно неизвестен. Самая распространённая версия заключается в том, что он, подобно Александру Флемингу через 20 лет после этого, выбросил полученную сталь и совершенно случайно заметил её устойчивость к разрушению. Разумеется, вероятность правдивости этой истории не стопроцентна.

Другой вариант истории, более вероятный, но менее интересный, утверждает, что Брайрли проверял полученный металл на устойчивость к химическому воздействию с помощью азотной кислоты. Заметив устойчивость к ней, он начал проверять воздействие других повреждающих веществ - уксуса и лимонного сока. Он был поражён тому, что и в этом случае его сплавы были устойчивы и к этим веществам и понял, что его изобретение найдёт обширное применение в области произовдства столовых приборов.

К сожалению, работодателей Гарри не впечатлила его находка, из-за чего ему пришлось обратиться к местному производителю столовых приборов - фирме R. F. Mosley. Он обратился к своему другу детства, Эрнесту Стюарту, работавшему в другой компании по производству столовых приборов, которая называлась Mosley’s Portland Works. Брайрли сделал это потому, что встретил некоторые трудности при производстве лезвий для ножей. За три недели Стюарт довёл процесс до совершенства. Гарри Брайрли хотел назвать своё изобретение «безржавчинной сталью», однако прижилось название «нержавеющая сталь», которое придумал Эрнест Стюарт.

Так Гарри Брайрли и изобрёл нержавеющую сталь ... Вот только здесь есть ещё кое-что, что стоит упомянуть.

В 1908 в эту «гонку изобретения» вступили немцы. Фирма «Krupp Iron Works» изготовила хромово-никелевую сталь для корпуса яхты под названием «Полнолуние». Яхта имела очень долгую историю и теперь находится на морском дне у западных берегов Флориды. Содержал ли материал корпуса яхты необходимые 10,5% хрома - неизвестно. Работники фирмы, конструировавшей яхту, Эдвард Маурер и Бенно Штраусс , на протяжении 1912-1914 годов работали над сталями, содержащими <1% углерода, <20% никеля и 15-40% хрома.

Также недовольные тем, что Европа получит первенство в этом вопросе, в противостояние вступили США. Во-первых, Элвуд Хайнс, огорчённый своей ржавой бритвой, поставил перед собой цель создать сталь, устойчивую к коррозии, которую он якобы создал в 1911 году. Другие два американца, Беккет и Дэнтизен, работали над созданием нержавейки, содержащей 14-16% хрома и 0,07-0,15% углерода в 1911-1914 годах.

В 1912 году поляк Макс Майерманн , по слухам, создал первую нержавеющую сталь , которую он представил на выставке «Adria» в Вене в 1913 году.

Также вполне недавно была обнаружена статья из шведского охотничьего магазина, которая описывает сталь, похожую на нержавейку , как материал для оружейных стволов. Звучит знакомо, не правда ли? Конечно, правдивость статьи может быть подвержена сомнению, однако это не помешало шведам заявить о том, что нержавейка - их изобретение.

Так и происходило изобретение нержавеющей стали. Конечно, до сих пор ведутся споры о том, кто же это сделал на самом деле, но пока первый, чьё изобретение было зафиксировано - Гарри Брайрли. Поэтому он и считается настоящим изобретателем. Однако, исследования других учёных, упомянутых в статье, также, несомненно, очень важны.

В нашем Интернет-магазине вы найдете широкий ассортимент прутков и высочайшего качества. Консультанты нашей фирмы с радостью ответят на все интересующие вас вопросы, помогут с выбором и осуществлением максимально быстрой доставки - звоните, пишите, заезжайте.

Долговечность и надежность механизмов зависят от материала, из которого они были изготовлены, то есть от совокупности всех его свойств и особенностей, которые и определяют эксплуатационные характеристики. На сегодняшний день большинство узлов и деталей машин производят из различных марок сталей. Рассмотрим этот материал более подробно.

Что такое сталь

Сталь - это сплав двух химических элементов: железа (Fe) и углерода (С), причем содержание последнего не должно превышать 2%. Если углерода больше, то этот сплав относится к чугунам.

Но сталь - это не только химически чистое соединение двух элементов, она содержит как вредные примеси, например серу и фосфор, так и специальные добавки, которые придают нужные свойства материалу - повышают прочность, улучшают обрабатываемость, пластичность и т. д.

Если в сплаве углерода менее 0,025% и содержится незначительное количество примесей, то его считают техническим железом. Этот материал отличается от сталей по всем показателям, он обладает высокими магнитными характеристиками, и его используют в качестве для изготовления электротехнических элементов. Чистого железа в природе не существует, получить его даже в лабораторных условиях очень сложно.

Несмотря на то что углерода в процентном отношении содержится совсем немного, он оказывает значительное влияние на механические и технические свойства материала. Увеличение этого вещества приводит к увеличению твердости, растет прочность, но при этом резко снижается пластичность. И, как следствие, меняются технологические характеристики: с ростом углерода снижаются литейные свойства, ухудшается обрабатываемость резанием. При этом низкоуглеродистые стали также плохо обрабатываются резанием.

Получение стали. Металловедение

Сталь - это самый распространенный сплав на планете. Получают ее промышленным способом из чугуна, из которого под влиянием высоких температур выжигают избыток углерода и другие примеси. Стали в основном получают двумя способами: плавление в мартеновских печах и плавление электропечах. Материал, изготовленный в электропечи, называется электросталь. Она получается более чистой по составу. Кроме того, существует множество специальных процессов для получения сплавов с особыми свойствами, например электродуговая плавка в вакууме или электронно-лучевая плавка.

Более подробно о сталях и других сплавах можно узнать при изучении такой науки, как металловедение. Она считается одним из разделов физики и охватывает не только сведения о марках стали и их составе, но и содержит сведения о структуре и свойстве материалов на атомарном и структурном уровне.

Студенты профильных ВУЗов проходят специальный курс «Промышленные стали», где подробно разбирают сплавы специального назначения: строительные, улучшаемые, цементируемые, для режущих и измерительных инструментов, магнитные, рессорно-пружинные, жаростойкие, стали для конструкций в холодном климате и т. д.

Классификация сталей по качеству

Все стали по качеству подразделяют на:

Сталь обыкновенного качества;

Качественная;

Сталь повышенного качества;

Высококачественная.

Качество стали напрямую зависит от процента содержания вредных примесей (состав) и соответствия заявленным механическим и технологическим характеристикам. В промышленности используются все виды, но по разным направлениям: стали обыкновенного качества - для неответственных деталей, стали повышенного качества и высококачественные - в конструкциях, к которым предъявляются особые требования.

Стали по ГОСТ: классификация


Сталь. Свойства: таблицы для самых распространенных марок с основными механическими и технологическими характеристиками

Марка стали

Механические свойства

Технологические свойства

Обрабатываемость резанием

Свариваемость

Пластичность при холодной обработке давлением

горячекатанная

Н - низкая;

У- удовлетворительная;

В - высокая;

σт - физический предел текучести, МПа;

σв - предел прочности при растяжении, МПа;

δ - относительное удлинение, %.