Трубы из кварцевой керамики. Способ получения изделий из кварцевой керамики. Трубы из кварцевого стекла

Керамика на основе ВеО (брокерит, броммелитовая керамика).

Техническая керамика.

Керамика – это материал, получаемый спеканием порошков заданного состава при температурах, существенно ниже их температуры плавления. Структура керамики близка к структуре ситаллов. И керамика и ситаллы состоят из кристаллических и аморфных фаз, но в керамике ещё имеются газовые фазы. Их присутствие в керамике обусловлено технологией. Технологический процесс производства керамических изделий включает много операций. Ключевыми операциями являются подготовка исходных компонентов, заключающаяся в измельчении сырья до заданного уровня, смешении компонентов, формовании изделия и обжиг. Формование керамического изделия часто проводится путём прессования. Чем выше давление прессования и чем мельче порошки, тем меньше пор в керамике, тем меньше содержание газовой фазы.

На пористость керамики также большое влияние оказывает режим спекания. Вообще, спекание – это очень сложный физико-химический процесс. Внешним признаком спекания является уменьшение размеров изделия и, соответственно, увеличение кажущейся плотности. Спекание порошка начинается обычно со «сваривания» зёрен в местах контакта. Сущность спекания заключается в самопроизвольном заполнении веществом свободного пространства внутри зёрен и между ними. При этом происходит уменьшение дефектности кристаллических решёток, снятия имеющихся напряжений в контактных участках материала. Движущей силой процесса спекания является стремление системы к уменьшению поверхностной энергии, в данном случае это выражается в уменьшении поверхности. Поэтому мелкозернистые порошки спекаются быстрее, чем крупнозернистые.

Одновременно с процессом спекания протекает рекристаллизация. Она заключается в образовании одних зёрен тела за счёт других. Состав кристаллических фаз при этом часто существенно изменяется. Если состав кристаллических фаз не изменяется, то рекристаллизация сводится к полиморфным превращениям, то есть, к образованию различных кристаллических модификацией одного и того же вещества. Если состав кристаллических фаз в процессе рекристаллизации изменяется, то это обусловлено либо диффузией компонентов и образованием твёрдых растворов, либо образованием новых веществ в результате химических реакций в смесях твёрдых веществ.

Механизм реакций в смесях твёрдых веществ очень сложен. Из курса химии известно, что твёрдые вещества химически не взаимодействуют друг с другом. Их химическое взаимодействие возможно только за счёт массопередачи путём внутренней диффузии, а коэффициент диффузии твёрдого в твёрдом очень мал – 10 -8 – 10 -16 м 2 /с. Таким образом, скорость чисто твёрдофазных реакций пренебрежимо мала. Практический опыт противоречит этим общим представлениям. Это связано с тем, что в действительности химические превращения при спекании керамических масс протекают при участии газовых и жидких фаз. Газовые фазы образуются, например, за счёт возгонки или диссоциации твёрдых веществ. Жидкие фазы образуются за счёт плавления одного из исходных компонентов или их эвтектических смесей.



В качестве примера такого процесса можно назвать взаимодействие оксидов цинка и алюминия с образованием шпинели

ZnO (тв) + Аl 2 O 3(тв) = ZnAl 2 O 4(тв)

ZnO (тв) ® ZnO (газ)

ZnO (газ) + Al 2 O 3(тв) ® ZnAl 2 O 4(тв) (ZnO . Al 2 O 3)

В состав смеси обычно добавляют небольшие количества так называемых «минерализаторов» или «плавней», имеющих относительно низкие температуры плавления. Они химически инертны по отношению к реакционной смеси, однако существенно изменяют условия реакции и свойства получаемого продукта. Механизм действия минерализаторов заключается либо в создании центров кристаллизации, либо в изменении скорости кристаллизации (в частности, путём изменения вязкости системы и отвода тепла от неё), либо в изменении кристаллической решётки и, соответственно, свойств кристаллических тел. Реакции в кристаллических смесях широко используются при изготовлении керамических изделий со специфическими свойствами.

Областей применения керамики не меньше, если не больше, чем областей применения полимеров. Керамика – первый искусственный материал, созданный человеком. Уже в каменном веке человек использовал предтечу керамики – глиняную посуду, пока не обожжённую. Первые обожжённые изделия появились в каменном веке – это была посуда, строительные материалы, декоративные и бытовые изделия из фаянса. Расцвет керамики относится к ХХ веку – этот период порой называют веком пластмасс и керамики.

Кроме традиционных направлений керамика используется в транспорте, машиностроении, приборостроении, электротехнике, электронике, энергетике, химической технологии, медицине, обрабатывающих орудиях, текстильной промышленности. Трудно найти область техники, где бы сейчас не использовалась керамика.

Термин «техническая керамика» отделяет керамику технического назначения от художественной керамики. Развитие технологии технической керамики вызвало появление керамики специального назначения, так называемой «тонкой технической керамики».

В основу классификации керамики положен признак наличия в ней определённого химического вещества, кристаллическая фаза которого преобладает в этом виде керамики. Область применения керамики является дополнительным признаком, так как одна и та же по своему составу керамика может использоваться в различных областях техники. В самом общем виде техническую керамику можно подразделить на следующие классы: 1) керамика из огнеупорных оксидов; 2) на основе силикатов и алюмосиликатов; 3) на основе двуокиси титана, титанатов, цирконатов и соединений с подобными свойствами; 4) на основе шпинелей; 5) на основе хромитов редкоземельных элементов; 6) на основе тугоплавких бескислородных соединений; 7) композиционные материалы.

6.1. Традиционная электротехническая керамика.

Электротехническую керамику подразделяют на 4 важнейших категории – магнитную, диэлектрическую, полупроводниковую и проводниковую, в том числе сверхпроводниковую. Все они характеризуются ионным строением кристаллических решёток. Рассмотрим вначале разновидность диэлектрической керамики – фарфоры. Основными компонентами фарфора являются пластичные глины и каолины, представляющие собой водные алюмосиликаты. Химическая формула каолина Аl 2 O 3 . 2SiO 2 . H 2 O. В состав фарфоров входят также кварцевые материалы (SiO 2), полевые шпаты (микроклин К 2 О. Аl 2 O 3 . 6SiO 2), глинозём (Al 2 O 3), кальцит (СаСО 3) и др.

Обожжённый фарфор состоит из кристаллов муллита 3Аl 2 O 3 . 2SiO 2 и кварца SiO 2 , промежутки между которыми заполнены стеклообразным материалом, образовавшимся в основном в результате расплавления полевого шпата.

Электротехнический фарфор содержит примерно 70% SiO 2 и 25% Al 2 O 3 . Остальное приходится на К 2 О, Na 2 O, Fe 2 O 3 и др.

Более высокими диэлектрическими свойствами обладает радиофарфор, стекловидная фаза которого облагорожена введением в неё тяжёлого оксида ВаО.

Дальнейшим усовершенствованием радиофарфора является ультрафарфор. Он содержит увеличенное количество глинозёма Аl 2 O 3 и ВаО. Ультрафарфор используется как высокочастотный диэлектрик вплоть до СВЧ.

Близкой по составу и свойствам к фарфору является стеатитовая керамика. Она в основном состоит из силикатов Мg и изготавливается на основе тальковых минералов 3МgO . 4SiO 2 . Н 2 О. Рецептура стеатитовой керамики и условия процесса спекания выбирают так, чтобы исключить полиморфные превращения силиката магния. Кроме силиката магния в рецептуру входят минерализаторы ZrO 2 , ZnO, ВаСО 3 и МgСО 3 , связывающие кремнезём SiO 2 , выделяющийся в процессе разложения талька при его нагревании. Свойства фарфоров представлены в таблице 7.

Таблица 7

Отличительной особенностью рассмотренных выше керамических материалов является очень быстрое ухудшение диэлектрических свойств с ростом температуры: возрастание tgd, падение r.

Все эти материалы имеют положительный коэффициент теплопроводности, лежащий в пределах (3 – 9) . 10 -6 К -1 .

Относительно высокий ТКЛР и низкий коэффициент теплопроводности 1,2 – 3,5 Вт/м. К обусловливают невысокую стойкость к термоударам. В этом отношении большой интерес представляют керамики на основе чистых оксидов, а также шпинели (двойные оксиды МgO . Al 2 O 3).

6.2. Оксидная керамика

Температура плавления чистого ВеО = 2570 ± 20 о С, энтальпия образования DН = - 616 ± 2,5 кДж/моль. Удельная теплоёмкость возрастает с увеличением температуры от 1,25кДж/кг. К при 100 о С до 2,08 при 900 о С. Твёрдость по Моосу кристаллов ВеО составляет 9, микротвёрдость – 15,2 ГН/м 2 . Самым удивительным теплофизическим свойством бериллиевой керамики является необычайно высокая теплопроводность = 219 Вт/м. К – во много раз выше теплопроводности остальных видов керамики, превосходящей теплопроводность большинства металлов и уступающей только серебру, меди и алюминию. Это свойство в сочетании с хорошими электрофизическими свойствами (e = 7, tge = 3 . 10 -4 , r = 10 13 Ом. м), высоким коэффициентом замедления и отражения тепловых нейтронов, малым поперечным сечением захвата и большим сечением рассеяния определило области применения этой керамики. Это ядерная энергетика (конструкционный материал, матричный материал для ядерного горючего), металлургия редких металлов (тигли для плавления Ве, Th, Pt, Ti, U и др.), электронная техника (мощные приборы СВЧ, теплоотводы различных радиоэлектронных устройств). Разработана технология прозрачной керамики из ВеО, высокоплотной и, наоборот, с повышенной пористостью (до 82 %).

При работе с ВеО необходимо учитывать её высокую токсичность. Бериллиевые соединения поражают кожу, дыхательные пути, вызывая пневмонию, раздражают желудочно-кишечный тракт и нервную систему. Предельно-допустимая концентрация Ве в воздухе рабочих помещений в виде тех или иных соединений не должна превышать 0,001 мг/м 3 .

6.2.2. Керамика на основе МgО (периклазовая керамика).

МgО – существует только в одной модификации и кристаллизуется в кубической системе. Т пл = 2800 о С, плотность = 3580 кг/м 3 , твёрдость – 6 по Моосу, энтальпия образования = - 613 кДж/моль, средняя удельная теплоёмкость изменяется от 0,975 при 100 о С до 1,22 кДж/г. К при 1500 о С.

МgО получают разложением химически чистых соединений Мg(ОН) 2 , МgСО 3 и др. МgО – более основной оксид, чем ВеО, способен взаимодействовать с водой, поэтому для приготовления шихты в качестве связок используют безводные растворы органических соединений – парафин, воск, олеиновую или стеариновую кислоты.

Спекание МgО производят в инертной или окислительной атмосфере при 1700 – 1800 о С. Добавки ZrO 2 , MnO 2 , Cr 2 O 3 , CaF 2 , B 2 O 3 , TiO 2 cнижают температуру спекания.

Теплопроводность периклазовой керамики умеренная – 28 Вт/м. К, но значительно более высокая, чем у фарфоров, поэтому и стойкость к термоударам более высокая. ТКЛР с ростом температуры повышается в диапазоне от 11,7 . 10 -6 до 14,2 . 10 -6 . Механические свойства периклазовой керамики достаточно высокие – предел прочности при сжатии s сж = 1200 – 1500 МПа, s изг в зависимости от технологии изменяется от 130 – 140 до 250 МПа, модуль упругости Е = 2,9 . 10 5 МПа.

Периклазовая керамика – хороший диэлектрик, e = 8 – 9, r v в зависимости от чистоты исходного продукта лежит в интервале от 10 15 до

Периклазовая керамика используется как огнеупорная, в тиглях из которой можно с высокой степенью чистоты плавить металлы, которые не восстанавливают МgО, например, Fe, Zn, Al, Sn, Cu, а также тяжёлые редкоземельные металлы. Может использоваться для футеровки высокотемпературных печей и аппаратов, работающих до 2000 о С, для изготовления пирометрических изделий (капилярные трубки, бусы), высокотемпературных изоляторов.

Прозрачная магниевая керамика используется для окон в высокотемпературных печах, устройствах инфракрасного контроля, натриевых лампах, химических реакторах. Однако способность к гидратации, выражающаяся в потемнении полированных поверхностей, летучесть при высокой температуре и сравнительно невысокая механическая прочность несколько ограничивают её использование.

6.2.3. Керамика из оксида алюминия – корундовая керамика.

Оксид алюминия Аl 2 O 3 может существовать в трёх основных кристаллических модификациях - a, b и g, причём a- и g- формы представляют собой чистые оксиды, а b-форма представляет собой условное обозначение группы алюминатов с высоким содержанием Аl 2 O 3 . Кроме них, зафиксированы ещё несколько кристаллических модификаций, большинство из которых при 1200 о С переходят в a-форму (корунд). Основным структурным мотивом в корунде служит алюмокислородный октаэдр. В природных условиях встречается только a-форма в виде минерала корунда, рубина, сапфира. Твёрдость корунда по шкале Мооса – 9, по шкале Роквелла – 90. Плотность корунда в зависимости от наличия в нём примесей колеблется от 3980 до 4010 кг/м 3 . Температура плавления составляет 2050 о С, энтальпия образования 1,7 МДж/моль.

Именно керамика, содержащая более 95% a-Аl 2 О 3 называется корундовой керамикой. В качестве минерализаторов используют МgO, MnO 2 , TiO 2 , ZrO 2 . Наиболее эффективно работает TiO 2 , который образует твёрдый раствор с a-Аl 2 О 3 и снижает температуру спекания с 1700 – 1750 о С до 1500 –1550 о С, одновременно способствуя интенсивному росту кристаллов корунда.

Добавка МgO, наоборот, задерживает рост кристаллов корунда и обеспечивает высокую плотность, т.к. не происходит образование пор. Мелкокристаллическая структура керамики обеспечивает лучшие механические свойства, такая керамика (микролит, ЦМ 332) используется для изготовления резцов для обработки металлов, деталей для протяжки проволоки, фильеры, нитеводители и другой износостойкий инструмент, а также абразивные материалы – абразивные круги, абразивные шлифовальные шкурки и т.п. Кроме того, такая керамика (поликор) обладает светопроницаемостью в видимой и инфракрасной части спектра, однако, если количество МgO превышает 0,6% (предел образования твёрдого раствора), светопропускание резко падает. Поликор обладает хорошими диэлектрическими свойствами: tgd = 3 . 10 -5 , r = 10 16 Ом. м, e = 10 – 12, Е пр = 15 МВ/м. Коэффициент теплопроводности l - 32 Вт/м. К, ТКЛР 8 – 8,5 . 10 -6 К -1 . Поликор обладает высокой стойкостью к термоударам – он выдерживает до 4 теплосмен (800 о С – 20 о С).

Светопроницаемая (прозрачная) керамика применяется в натриевых лампах, для окон устройств инфракрасного контроля, для изготовления подложек СВЧ – микросхем, корпусов микросхем, изоляторов авто- и авиасвечей зажигания, установочных деталей, высокотемпературных реле, вакуумплотных спаев, антенных обтекателей в авиа- и ракетостроении и др.

Пористая корундовая керамика с пористостью до 90% служит хорошим теплоизолирующим материалом при температурах до 1700 – 1750 о С, применяется в качестве деталей костных имплантантов (биокерамика).

Керамика из b-Аl 2 O 3 (Na 2 O . 11Al 2 O 3), благодаря присутствию в ней оксида натрия используется для изготовления твёрдых электролитов. Электросопротивление такой керамики при комнатной температуре составляет 1 – 5 . 10 2 Ом. см, а при 500 о С – 10 – 25 Ом. см. Такие материалы используют в высокоэффективных химических источниках тока, в частности, в энергоёмких натриево-серных аккумуляторах, перспективных для создания электромобиля.

Другой областью применения керамика из b-Аl 2 O 3 – плавленные огнеупоры (в сочетании с корундом) для футеровки стекловаренных печей.

Кварцевая керамика – условное название изделий, получаемых методами керамической технологии из порошкообразного стекла с содержанием SiO 2 ³ 99,5%. Это - единственный керамический материал, основу которого составляет не кристаллическая, а аморфная, стекловидная фаза. Создание кварцевой керамики – вынужденная мера и вызвана большими технологическими трудностями при формовании изделий из кварцевого стекла в связи с большой вязкостью расплава кремнезёма даже при 2000 о С.

Выпускается как плотная, так и пористая кварцевая керамика с пористостью до 80 – 85%. При обжиге, начиная с 1200 о С, начинается процесс кристаллизации кварцевого стекла. Образуется высокотемпературная a-форма кристобалита. При охлаждении a-форма переходит в низкотемпературную b-форму (180 – 270 о С). Это сопровождается уменьшением объёма на 5,2% и, соответственно, повышением истинной плотности с 2210 до 2330 кг/м 3 .

КЛТР кварцевой керамики (~ 0,5 . 10 -6 К -1) почти на порядок ниже, чем у других видов оксидной керамики. Это определяет её высокую стойкость к термоударам, хотя её теплопроводность и не высока (0,7 – 1,4 Вт/м. К).

Диэлектрические свойства кварцевой керамики достаточно высоки: e = 3 – 3,7; tgd = 6 . 10 -4 .

Кварцевая керамика может длительно эксплуатароваться при температурах до 1200 – 1300 о С. Она используется как теплоизолятор в тепловых агрегатах, труб для подачи расплавленного алюминия, форм для литья металлов, изготовления обтекателей в ракетной и космической технике и др.

6.2.5. Керамика из диоксида циркония ZrO 2

ZrO 2 – устойчивое соединение, проявляет полиморфизм, существует в трёх модификациях – моноклинной, тетрагональной и кубической. Моноклинная устойчива при низких температурах, при нагревании до 1200 о С переходит в тетрагональную форму, устойчивую только при высоких температурах. Этот переход сопровождается усадкой на 7,7 %. При охлаждении ниже 1000 о С происходит обратный переход с соответствующим изменением объёма и плотности. При температуре от 1900 до 2700 о С устойчивой формой является кубическая. Плотность моноклинной формы 5560 кг/м 3 , твёрдость по Моосу = 6,5, температура плавления Т пл = 2700 о С. Циклические изменения температуры приводят к разрушению керамики. Для стабилизации кубической модификации создают твёрдые растворы ZrO 2 c CaO, MgO, Y 2 O 3 и др. Такой материал называется «стабилизированным диоксидом циркония», однако, он плохо сопротивляется тепловым ударам. Оказалось, что хорошую стойкость к термоударам проявляет материал, сохраняющий в кубической модификации небольшое количество тетрагональной модификации ZrO 2. На рис.5.1 представлены кривые изменения ТКЛР различных модификаций.

Свойства изделий из спечённого ZrO 2 связаны со степенью стабилизации, видом и количеством введённого стабилизатора. В целом можно сказать, что керамика обладает большой прочностью при нормальных температурах и сохраняют достаточно высокую прочность до 1300 – 1500 о С. Так, s сж при 20 о С составляет 2100 МПа, а при 1400 о С – 1300 МПа.

Интересна зависимость теплопроводности циркониевой керамики от температуры. Если у большинства керамик с ростом температуры l снижается, то у ZrO 2 - керамики остаётся практически постоянной.

Диэлектрические свойства диоксида циркония невысоки. Уже при 1000 – 1200 о С он фактически представляет собой проводник. Проводимость имеет ионный характер благодаря образованию кислородных вакансий при замещении ионов Zr +4 двухвалентными и трёхвалентными ионами. Наибольшая проводимость достигается при стабилизации диоксида циркония оксидом скандия Sc 2 O 3 .

Циркониевая керамика используется в качестве твёрдых электролитов для работы при высоких температурах, например, в топливных элементах, где температуры достигают 1000 – 1200 о С, в МГД-генераторах, в высокотемпературных нагревателях для разогрева в печах до 2200 о С. В качестве огнеупоров используется при высокотемпературных плавках ряда металлов и сплавов, в частности, Pt, Ti, Rh, Pd, Ru, Zr и др. Благодаря низкой теплопроводности, отличной химической стойкости и большой твёрдости и прочности ZrO 2 - керамика используется в ракетных, реактивных и других двигателях, в атомном реакторостроении.

6.2.6. Керамика из оксида иттрия Y 2 O 3 .

Оксид иттрия до 2300 о С не проявляет полиморфных превращений. Т пл = 2410 – 2415 о С. Плотность кристаллов – 5030 кг/м 3 , удельная теплоёмкость составляет 0,105 кДж/кг. К, энтальпия образования DН = -1910 кДж/моль, потенциал Гиббса DG = -1820 кДж/моль. В окислительной атмосфере (воздух) оксид иттрия стабилен вплоть до Т пл. Стойкость к термоударам спечённой керамики невысока. Это обусловлено малой теплопроводностью (8,5 Вт/м. К) и относительно высоким ТКЛР = 8 – 9 . 10 -6 К -1 . По электрическим свойствам иттриевая керамика относится к хорошим изоляторам: r v при 500 о С составляет 8 . 10 10 Ом. м, e = 14.

Керамика из Y 2 O 3 c плотностью, близкой к теоретической, является наиболее прозрачной с высоким светопропусканием (до 80 %). Она применяется для изготовления ИК-окон летательных аппаратов, в качестве смотровых окон высокотемпературных печей. Другие области применения – электровакуумная техника, атомная энергетика (контейнерный материал), тигли для восстановления урановых соединений, стабилизационный материал для циркониевой керамики, конструкционный материал и др.

Изобретение относится к технологии получения модифицированных керамических материалов на основе кварцевого стекла. Техническим результатом изобретения является повышение прочности и термостойкости изделий. Способ получения кварцевой керамики включает изготовление шликера из боя кварцевого стекла, формирование сырой заготовки методом отлива в гипсовые формы, пропитку сырой заготовки жидким пропитывающим раствором, сушку пропитанной заготовки кварцевой керамики и последующую термообработку. При этом пропитывающий раствор содержит смесь Al(NO 3) 3 , тетраэтоксисилана, этанола и воды, молярное соотношение компонентов обеспечивает в пропитывающем растворе рН 4, а термообработку пропитанной заготовки кварцевой керамики осуществляют при температуре 950-1200°C. 1 з.п. ф-лы, 6 ил., 2 табл., 1 пр.

Рисунки к патенту РФ 2525892

Изобретение относится к керамической промышленности, а точнее к технологии получения модифицированных керамических материалов на основе кварцевого стекла с повышенной высокотемпературной прочностью для изготовления керамических изделий различного назначения.

Кварцевая керамика широко применяются для создания различных огнеупорных изделий для стекольной промышленности и металлургии (тигли, ковши, мешалки, патрубки, технологическая оснастка), методы ее получения известны по многочисленным научным публикациям, в том числе патентной информации.

В патентной информации US 20090206525, опубликованной 20.08.2009 по индексу МПК С04В 35/64, описан способ получения материала из кварцевой керамики, включающий формирование пористого керамической заготовки из суспензии кремнеземных частиц с последующей пропиткой пористого материала жидким раствором, содержащим спекающие добавки (соединения щелочных или щелочноземельных металлов, бора или фосфора).

Патентная публикация US 20120098169, опубликованная 26.04.2012 по индексу МПК С04В 35/64, описывает получение высокоплотной кварцевой керамики при использовании оксида бора в качестве спекающей добавки. Оксид бора вводился в состав материала в виде порошка на стадии изготовления исходной суспензии дисперсных частиц.

Использование соединений бора в качестве спекающей добавки для кварцевой керамики, вводимой путем пропитки жидким раствором пористой керамической заготовки, описано также в патентной публикации US 20090206525.

Керамика, содержащая SiO 2 и Al 2 O 3 , хорошо известна своими высокими прочностными свойствами и термостойкостью и описана в научной и патентной литературе. При этом в литературе описаны керамические материалы, характеризующиеся различным соотношением компонентов (Al 2 O 3 /SiO 2) и полученные различными методами. Так, в патенте US 4895814, опубликованном 23.01.1990 по индексу МПК С04В 35/18, описана керамика, обладающая повышенной прочностью при высоких температурах. Описанный в этом патенте технологический процесс включает использование аморфных порошков оксидов алюминия и кремния, прессование их смеси и спекание при температурах 1500-1750°С.

Необходимо отметить, что полученная керамика содержит более 50 вес.% оксида алюминия.

В патенте РФ 2436206, опубликованном 10.12.2011 по индексу МПК H01Q 1/42, упрочнение и герметизацию поверхностного слоя кварцевой керамики осуществляют путем модификации ее поверхностного слоя на глубину 1-3 мм пропиткой водным раствором соли хрома с плотностью 1200-1400 кг/м 3 с последующей сушкой и термообработкой материала при температуре 450-750°С в течение 1-3 часов.

Метод пропитки растворами, содержащими соединения хрома, пористых огнеупорных изделий с целью их упрочнения был описан также в патенте US 3789096, опубликованном 29.01.1974 по индексам МПК В23Р 15/28, B24D 3/14? С04В 41/50. В этом способе технологический процесс включает полную пропитку керамической заготовки водным или спиртовым раствором соединений хрома с последующим обжигом при температуре спекания материала. Пропитку осуществляют по всему объему путем погружения заготовки в раствор. Как и в предыдущих аналогах, соединения хрома вводятся до обжига материала или изделия, и они являются структурными элементами материала, положительно влияющими на одни и отрицательно на другие свойства материала и изделия. Как описано в патенте РФ 2436206, применительно к кварцевой керамике такое техническое решение приводит к усилению кристаллизации кварцевого стекла, снижению термостойкости, прочности и ухудшению диэлектрических характеристик материала.

В патенте US 5639412, опубликованном 17.06.1997 по индексам С04В 35/14, С04В 35/624, С04В 38/00, описан золь, состоящий из частиц кремнезема, поверхность которых модифицирована ионами металлов (в качестве примера в патенте описана модификация частиц кремнезема ионами алюминия). Золь, согласно описанию патента, имеет pH<3, а размер коллоидных частиц настолько мал, что обеспечивал возможность формирования из таких частиц пористого тела с размером пор 20 Å.

Необходимо отметить, что использование золя, описанного в патенте US 5639412, в качестве пропитывающего раствора для модификации и упрочнения кварцевой керамики является неэффективным. В описанном золе соотношение атомов алюминия и кремния составляет, в соответствии с описанием патента, /+=0,01-0,05. При пропитке таким золем исходного керамического материала, содержащего более 99% SiO 2 и имеющего открытую пористость менее 30%, и последующей термообработке полученный модифицированный материал будет содержать не более 0,03% Al 2 O 3 . Близкий по химическому составу композиционный золь, содержащий SiO 2 и Al 2 O 3 и используемый для изготовления пористой керамики, описан в патенте US 5610109, опубликованном 11.03.1997 по индексам МПК C04B 35/14, C04B 35/624, C04B 38/00.

По технической сущности наиболее близким к предлагаемому материалу является упрочненный керамический материал, описанный в патенте РФ 2458022, опубликованном 10.08.2012 по индексам МПК C04B 35/14 и B82B 3/00. В этом патенте описана наномодифицированная кварцевая керамика, включающая пористую керамическую основу из зерен кварцевого стекла и модифицирующую добавку из оксида алюминия. В качестве основы описанный материал содержит обожженную кварцевую керамику или изделия из нее с открытой пористостью 7-14%, полученные методом водного шликерного литья из полидисперсной суспензии с размером зерен от 0,1 до 500 мкм, при содержании частиц 0,1-5,0 мкм 20-30%, частиц 60-500 мкм 2-10%. В качестве модифицирующей добавки материал содержит наночастицы -Al 2 O 3 в количестве 1,0-2,5 вес.%, внедренные в зоны стыка зерен кварцевого стекла за счет массопереноса. Наночастицы -Al 2 O 3 получают за счет пропитки керамической основы водным раствором соли алюминия Al(NO 3) 3 ·9H 2 O, сушки и пиролиза при температуре 400-600°C. Недостатком способа-прототипа является то, что вводимые в стыковые зоны керамики наночастицы -Al 2 O 3 лишь заполняют часть пустот материала и немного увеличивают его плотность, в то же время практически не способствуя дополнительному связыванию кремнеземистых частиц в единый каркас.

Задача изобретения состоит в разработке метода получения высокопрочной термостойкой кварцевой керамики. Поставленная цель достигается тем, что наряду с модифицирующей добавкой соли алюминия в состав пропитывающего раствора вводится материал, способный формировать коллоидные частицы кремнезема, которые в свою очередь формируют цепочки и сети коллоидных частиц кремнезема, дополнительно связывающие частицы кремнеземистые частицы керамического материала.

Способ получения кварцевой керамики включает изготовление шликера из боя кварцевого стекла, формирование сырой заготовки методом отлива в гипсовые формы, пропитку сырой заготовки жидким пропитывающим раствором, сушку пропитанной заготовки кварцевой керамики и последующую термообработку, в отличие от прототипа пропитывающий раствор содержит смесь Al(NO 3) 3 , тетраэтоксисилана, этанола и воды, при этом молярное соотношение компонентов обеспечивает в пропитывающем растворе рН 4, а термообработку пропитанной заготовки кварцевой керамики осуществляют при температуре 950-1200°C.

Пропитывающий раствор имеет продолжительность гелеобразования от 10 минут до 6 часов.

С учетом технико-экономических требований способ получения плотной и механически прочной кварцевой керамики должен обеспечивать экологическую безопасность производства, не требовать использования сложного и дорогостоящего оборудования и быть основан на применении недефицитных и недорогих сырьевых материалов. Хорошо известно, что при термообработке при температурах >1200°C в кварцевой керамике происходят процессы кристаллизации кристобалита, сопровождающиеся значительным снижением прочности материала (см. ). Поэтому температура технологического процесса обработки изделий из кварцевой керамики не должна превышать 1200°C.

Использование кремнийорганических связующих для производства технической оксидной керамики описано в научно-технической литературе. Так, в приведены результаты разработок по использованию тетраэтоксисилана и других органосиликатных соединений в качестве связующего для порошкообразных материалов при изготовлении композиционных материалов.

Пропитка предварительно сформированных монолитных изделий из пористой кварцевой керамики кремнийорганическими полимерными соединениями описана в патенте РФ 2209494, опубликованном 27.07.2003 по индексу МПК H01Q 1/42. Пропитанные этими соединениями керамические изделия в последующих технологических процессах не подвергались термообработке и по структуре материала представляли собой полимерно-керамический композит.

Выбор способа обработки изделий из кварцевой керамики основывается на рассмотрении свойств обрабатываемого материала и общей используемой технологической схемы изготовления из него изделий.

Общая используемая схема изготовления изделий из кварцевой керамики является общепринятой (см. напр. ) и включает следующие основные технологические операции:

1. Изготовление шликера из боя кварцевого стекла.

2. Формирование сырой заготовки методом отлива в гипсовые формы.

3. Сушка сырого изделия.

4. Термообработка при температурах 1100-1200°С.

По технико-экономическим причинам (экономия энергоресурсов; отсутствие необходимости использования дополнительного сложного оборудования) технологический процесс упрочнения керамических изделий целесообразно совместить с одной или несколькими уже использующимися стадиями технологического процесса.

В предлагаемом методе стадию упрочнения кварцевой керамики предлагается совместить с уже используемой в технологическом процессе стадией термообработки материала при температурах 1100-1200°С. Хорошо известно, что при термообработке при этих температурах происходит полное разложение нитрата алюминия с образованием оксида.

Хорошо известно, что в водном растворе тетраэтоксисилан (TEOS) гидролизуется с образованием кремниевой кислоты:

Скорость процесса гидролиза зависит от химического состава, pH и температуры раствора. Из уравнения реакции (1) хорошо видно, что для полного протекания процесса гидролиза TEOS молярное соотношение / в растворе должно быть 4.

Влияние pH раствора на протекание процессов гидролиза TEOS и конденсации частиц кремнезема подробно описано в литературе (см., например, ). В нейтральной среде скорость гидролиза невелика. Для ускорения гидролиза TEOS процесс проводят в щелочной или в кислой среде.

В щелочной среде при комнатной температуре процессы гидролиза TEOS и роста образующихся частиц SiO 2 протекают очень быстро. В таком растворе за очень короткое время образуются крупные частицы кремнезема, раствор быстро мутнеет и расслаивается из-за осаждения этих крупных частиц. Кроме того, в щелочной среде возможно образование осадков малорастворимых гидрооксидов металлов. Поэтому для введения в кварцевую керамику модифицирующих неорганических компонентов целесообразно использовать пропитывающие растворы, имеющие pH<7. Отметим, что водные растворы солей сильных кислот и некоторых металлов (например, алюминия) имеют pH<7 из-за частичного гидролиза.

Образующаяся кремниевая кислота способна формировать коллоидные частицы кремнезема, образуя коллоидный раствор (золь). Образующиеся коллоидные частицы, взаимодействуя друг с другом, образуют агрегаты, вязкость раствора постепенно увеличивается и жидкий раствор превращается в гель. Скорость перехода раствора из жидкого в гелеобразное состояние также сильно зависит от его химического состава, pH и температуры. С увеличением вязкости раствора скорость пропитки им керамики резко снижается. Поэтому химический состав и pH пропитывающего раствора должны быть выбраны таким образом, чтобы в течение всего процесса пропитки исходной заготовки из кварцевой керамики раствор оставался бы в жидком состоянии, и вязкость его оставалась бы практически неизменной. Это означает, что при комнатной температуре продолжительность гелеобразования свежеприготовленного раствора (промежуток времени от смешения исходных компонентов жидкого раствора до превращения этого раствора в гель) должна превышать 10-15 минут, т.е. время, в течение которого раствором могут быть пропитаны хотя бы поверхностные слои изделия из кварцевой керамики.

При контакте рассматриваемого свежеприготовленного пропитывающего раствора с кварцевой керамикой образующаяся при гидролизе TEOS кремниевая кислота может взаимодействовать с ее поверхностью частиц кремнезема, составляющих структуру керамики. Формирующиеся в результате этого взаимодействия новые химические связи будут дополнительно связывать частицы кремнезема и способствовать упрочнению керамики. Кроме того, коллоидные частицы кремнезема, образовавшиеся в растворе, заполняют поры и микротрещины в структуре керамики, способствуя уплотнению и упрочнению керамического материала.

Конкретный пример № 1 изготовления кварцевой керамики.

В качестве исходного материала были использованы образцы кварцевой керамики, полученные методом шликерного литья в гипсовые формы и подвергнутые сушке при комнатной температуре. Образцы имели форму штабиков размерами 65×8×8 мм и характеризовались пористостью ~25%.

Были изготовлены водно-спиртовые растворы на основе тетраэтоксисилана (TEOS, Si(C 2 H 5 O) 4) с модифицирующими компонентами для пропитки образцов пористой кварцевой керамики. Химический состав растворов приведен в Таблице 1. Образцы керамики пропитывались растворами при комнатной температуре в течение 10 минут. После пропитки образцы подвергались сушке при комнатной температуре в течение 24 часов и термообработке в электрической муфельной печи. Максимальная температура обработки образцов указана в Таблице 2. При обработке образцов № № 1-25 при достижении указанной максимальной температуры нагрев сразу же прекращался и образцы остывали до комнатной температуры. При обработке образцов № № 26-30 образцы выдерживались при максимальной температуре 2 часа и затем образцы остывали до комнатной температуры.

Определение кажущейся плотности и открытой пористости проводили методом гидростатического взвешивания в соответствие с ГОСТ 2409-80. Определение предела прочности при изгибе проводили методом трехточечного изгиба.

Результаты сравнительных испытаний, приведенные в Таблице 2, показывают, что обработка изделий из кварцевой керамики приводит к значительному увеличению ее прочности на изгиб. Наблюдаемое увеличение прочности проявляется при использовании различной продолжительности пропитки керамики растворами и при различных температурах ее последующей термообработки (950-1200°С).

Сопоставление данных по плотности керамики показывает, что плотность обработанных образцов выше. При этом необходимо отметить, что значения плотности обработанных образцов значительно ниже величины плотности плотного аморфного кремнезема (2,2 г/см 3). Наблюдаемое значительное увеличение прочности керамики при относительно небольшом увеличении плотности образцов позволяет предположить, что обработка приводит к заполнению наиболее мелких пор и залечиванию микротрещин, определяющих прочность материала.

Таблица 1.
Химический состав пропитывающих растворов.
№ п/п Химический состав растворов и характеристика растворов Состав твердой фазы, образующейся при сушке и последующей термообработке растворов , мол.%
Вода, г Этанол, г TEOS, г Al(NO 3) 3 9H 2 O, г Характеристика раствора SiO 2 Al 2 O 3
1 10 25 29 4 Пропитывающий состав прозрачен и однороден 96,4 3,6
2 10 3 29 4 Раствор неоднороден, отчетливо видна плохая смешиваемость компонентов
3 10 25 29 40 Раствор неоднороден, присутствуют отдельные неоднородные белые хлопья
В таблице приведен расчетный состав твердой фазы в мольных процентах оксидов.

Очевидно, что для однородной и воспроизводимой обработки керамических образцов пропитывающий раствор должен быть однородным. Испытанные нами образцы растворов № 2 и № 3 этим свойством не обладают.

Табл. 2.
Прочность на изгиб керамических образцов.
№ п/п Продолжительность пропитки Температура обработки, °С Номер пропитывающего раствора Прочность,

кг/см 2

Среднее значение прочности P cp .,

Кг/см 2

Среднеквадратичное отклонение, Относительное стандартное отклонение,Кажущаяся плотность, Открытая пористость, %
1 - 950 - 7 11 9 0,82 1.72 21
2 - 950 - 10
3 - 950 - 7
4 - 950 - 27
5 - 950 - 2
6 16 часов 950 1 189 145 56 0,39 1,81 17,1
7 16 часов 950 1 182
8 16 часов 950 1 155
9 16 часов 950 1 164
10 16 часов 950 1 35
11 20 мин 950 1 131 140 24 0,17
12 20 мин 950 1 121
13 20 мин 950 1 136
14 20 мин 950 1 186
15 20 мин 950 1 124
16 90 мин 950 1 123 135 10 0,08
17 90 мин 950 1 135
18 90 мин 950 1 152
19 90 мин 950 1 133
11 - 1050 - 11 30 13 0,43 1,74 20,0
12 - 1050 - 39
13 - 1050 - 17
14 - 1050 - 43
15 - 1050 - 38
16 12 мин 1050 1 220 261 31 0,12 1,78 18,8
17 12 мин 1050 1 277
18 12 мин 1050 1 240
19 12 мин 1050 1 311
20 12 мин 1050 1 259
21 12 мин 1200 1 288 325 55 0,17 1,79 17,8
22 12 мин 1200 1 312
23 12 мин 1200 1 362
24 12 мин 1200 1 326
25 12 мин 1200 1 337
26 - 1200 - 98 116 27 0,23 - -
27 - 1200 - 75
28 - 1200 - 120
29 - 1200 - 148
30 - 1200 - 142
31 12 мин 900 1 183 226 29 0,13
32 12 мин 900 1 233
33 12 мин 900 1 262
34 12 мин 900 1 202
35 12 мин 900 1 249
36 12 мин 20 1 152 137 23 0,17
37 12 мин 20 1 159
38 12 мин 20 1 146
39 12 мин 20 1 132
40 12 мин 20 1 95
Пропитка образцов № № б-11 осуществлялась в течение 16 часов при комнатной температуре.

При обработке образцов № № 26-30 образцы выдерживались при максимальной температуре 2 часа и затем образцы остывали до комнатной температуры.

На Фиг.1 приведены зависимости прочности (кг/см 2) исходного (кривая 1) и пропитанного раствором (кривая 2) керамических образцов от температуры термообработки. При термообработке этих образцов нагрев прекращался сразу же по достижению заданной температуры и образцы извлекались из печи после ее охлаждения до комнатной температуры. Из графиков видно, что упрочнение сырых исходных образцов наблюдается лишь при температурах термообработки более 1000-1100°С. При температуре 900°С прочность исходных и обработанных образцов одинакова. Значительное увеличение прочности образцов, пропитанных раствором № 1 (см. Табл. 1), наблюдается при температурах >900°С. Именно поэтому заявляемый температурный интервал обработки материала 950-1200°С.

На Фиг.2 приведены зависимости относительного отклонения значений прочности образцов необработанной (кривая 1) и обработанной раствором (кривая 2) кварцевой керамики от температуры термообработки. Видно, что с увеличением температуры термообработки значения относительного отклонения значений прочности уменьшаются, т.е. разброс значений прочности образцов, обработанных при одинаковых условиях, становится меньше. Необходимо отметить, что значения относительного отклонения значений прочности образцов, обработанных раствором 1, значительно меньше, чем для необработанной керамики во всем использованном диапазоне температур термообработки. Это свидетельствует о том, что предлагаемый способ обработки кварцевой керамики обеспечивает не только значительное увеличение прочности, но и существенное уменьшение разброса ее значений, т.е. возрастает стабильность прочностных характеристик материала.

На Фиг.3 и 4 приведены электронно-микроскопические снимки поверхности образцов, исходной кварцевой керамики, неподвергнутой жидкостной обработке (Фиг.3), и образца керамики, подвергнутого обработке в соответствии с предлагаемым методом (Фиг.4). Оба образца керамики были подвергнуты термообработке при 1050°С. Сравнение приведенных снимков показывает, что принципиальных изменений в структуре материала не наблюдается. Этот факт является неудивительным, учитывая общую низкую (около 25%) пористость исходных керамических образцов и низкое содержание твердой фазы в использованном растворе. Однако обращает на себя внимание визуально отчетливо проявляемая несколько большая связанность структуры материала.

Существенно другая картина наблюдается для электронно-микроскопических снимков областей излома образцов (Фиг.5 и 6). Если для образца керамики, не подвергнутого упрочняющей обработке, наблюдается полное разрушение структуры материала (Фиг.5), то образец, подвергнутый упрочняющей обработке (Фиг.6), сохраняет связанные воедино кремнеземистые частицы.

Литература

1. Пивинский Ю.Е., Ромашин А.Г. Кварцевая керамика. - М.: Металлургия, 1974, 264 с.

2. Яо И.М. Композиционные керамические материалы на основе кремнийорганического связующего и тугоплавких бескислородных наполнителей. - Диссертация на соискание ученой степени кандидата технических наук. Казанский государственный технологический университет, Казань, 2000.

3. Айлер Р. Химия кремнезема, ч.1. М.: Мир, 1982, 416 с.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ получения кварцевой керамики, включающий изготовление шликера из боя кварцевого стекла, формирование сырой заготовки методом отлива в гипсовые формы, пропитку сырой заготовки жидким пропитывающим раствором, сушку пропитанной заготовки кварцевой керамики и последующую термообработку, отличающийся тем, что пропитывающий раствор содержит смесь Al(NO 3) 3 , тетраэтоксисилана, этанола и воды, при этом молярное соотношение компонентов обеспечивает в пропитывающем растворе рН 4, а термообработку пропитанной заготовки кварцевой керамики осуществляют при температуре 950-1200°C.

2. Способ по п.1, в котором пропитывающий раствор имеет продолжительность гелеобразования от 10 минут до 6 часов.

Являясь официальным представителем голландского производителя изделий из кварцевого стекла и керамики LSP-QUARTZ, предлагаем Вам изделия из высококачественного кварцевого стекла и вакуумной керамики.

Трубы из кварцевого стекла

Кварцевые трубы диаметром до 450 мм и длиной до 8000 мм. Точность изготовления ±0,2 to 1,2 мм на диаметр и толщину.

Лодочки для полупроводниковых пластин

Лодочки предназначены для размещения полупроводниковых пластин в реакторе при проведении процессов диффузии. Лодочки для полупроводниковых пластин могут быть изготовлены для пластин с диаметром от 76 до 400 мм. Стандартная длина лодочки 1600 мм.

Узлы из кварцевого стекла и металла

Соединения из кварцевого стекла и металла могут применяться в вакуумном оборудовании, для подачи напряжения в камеры, в индукционных печах.

Изделия по чертежам заказчика

Изделия из кварцевого стекла, керамики или их соединения с металлическими деталями выполняются по чертежам, согласованным с заказчиком. Возможно изготовление на основе эскизов или трехмерных моделей.

керамические материалы, вырабатываемые на основе кварцевого стекла (См. Кварцевое стекло), отличающиеся высокой химической и термической стойкостью. Основное отличие К. к. от кварцевого стекла - пористость, обусловливающая меньшую теплопроводность и пониженные механическая прочность и объёмную массу К. к. Изделия из К. к. формуют способами шликерного литья, полусухого прессования, горячего литья и обжигают при температуре 1200-1300 °С (см. ст. Керамика). К. к. применяют в ракетной технике для изготовления головных частей ракет, обтекателей антенн, сопел ракетных двигателей, а также для футеровки печей, теплообменников и др. тепловых агрегатов. Пенокварц (разновидность К. к.) перспективен как материал для тепловой защиты в космической технике.

  • - была известна в Японии с глубокой древности...

    Вся Япония

  • - неметаллич. материалы и изделия, получаемые спеканием глин или порошков неорг. в-в. По структуре К. подразделяют на грубую, имеющую крупнозернистую неоднородную в изломе структуру, и тонкую - с однородной...

    Химическая энциклопедия

  • - изделия и материалы, полученные спеканием глин и их смесей с минер. добавками, а также оксидов металлов и др. неорганич. соединений...

    Естествознание. Энциклопедический словарь

  • - гончарное производство, а также изделия из обожженной глины, преимущественно посуда...

    Античный мир. Словарь-справочник

  • - в 7 - 6 вв. до н.э. греки изготавливали не только посуду, применяя при этом гончар. круг, но и плоские керамич. плиты, предназначавш. для облицовки зданий, к-рые в архаич...

    Древний мир. Энциклопедический словарь

  • - В 7 - 6 вв. до н. э. греки изготавливали не только посуду, применяя при этом гончарный круг, но и плоские керамич. плиты, предназначавшиеся для облицовки зданий, которые в архаич...

    Словарь античности

  • - , изделия и материалы из глин или их смесей с различными неорганическими соединениями, закреплённые специальным обжигом...

    Художественная энциклопедия

  • - изделия и материалы, полученные спеканием глин и их смесей с минеральными добавками, а также окислов и других неорганических соединений. Основные виды керамики – терракота, майолика, фаянс, фарфор...

    Энциклопедия культурологии

  • - Материалы и изделия из минерального сырья, полученные путем обжига при высоких температурах...

    Строительный словарь

  • - изделия и материалы, получаемые спеканием глин и их смесей с минер. добавками, а также оксидов и др. неорганич. соединений. В зависимости от состава сырья и темп-ры обжига керамич...

    Большой энциклопедический политехнический словарь

  • - в искусстве и технике - предмет, изготовленный из неорганических соединений, которые формуют в мягком состоянии и затем подвергают нагреву в печи для придания им твердости...

    Научно-технический энциклопедический словарь

  • - см. Лампа ультрафиолетового излучения...

    Большой медицинский словарь

  • - изделия и материалы, получаемые спеканием глин и их смесей с минеральными добавками, а также оксидов и других пеорганических соединений...

    Энциклопедический словарь по металлургии

  • - производство посуды и других предметов домашнего обихода или строительного назначения из различных сортов глины, как таких, которые, будучи вылеплены, только высушиваются в обыкновенной температуре, так и...

    Энциклопедический словарь Брокгауза и Евфрона

  • - изделия и материалы, получаемые спеканием глин и их смесей с минеральными добавками, а также окислов и др. неорганических соединений...
  • - газоразрядный источник интенсивного ультрафиолетового излучения, используемый при светолечении, то же, что Ртутная лампа...

    Большая Советская энциклопедия

"Кварцевая керамика" в книгах

Керамика

Из книги Японская цивилизация автора Елисеефф Вадим

Керамика Керамические изделия, независимо от того, простые они или дорогостоящие, остаются предметами, которые вызывают всеобщее восхищение. Их передают по наследству, покупают, и каждый японец неравнодушен к этому искусству. Многие любители обучаются гончарному

Керамика

Из книги Цивилизация классического Китая автора Елисеефф Вадим

Керамика Великая профессия ремесленника-гончара получила в период Сун беспрецедентное распространение. Это было вызвано страстными поисками сунских горшечников, цели которых в какой-то степени напоминали стремления алхимиков: прокаливая сосуды на сильном огне, они

Керамика

Из книги Пикассо автора Пенроуз Роланд

Керамика В долине, окруженной сосновыми лесами, среди виноградников, оливковых рощ и созданных руками человека террас на склонах гор, где растут лаванда, жасмин и другие благоухающие растения, раскинулся маленький городишко Валлорис. Над покрытыми розовой черепицей

Керамика

Из книги Славяне [Сыны Перуна] автора Гимбутас Мария

Керамика Изменения в характере изделий из металла дают общую картину развития культуры в данный период, а эволюция керамических изделий подтверждает непрерывность культурного процесса на протяжении раннего бронзового века.Шнуровой орнамент постепенно исчезает и

Керамика

Из книги Этруски [Быт, религия, культура] автора Макнамара Эллен

Керамика Мы уже упоминали несколько типов греческой керамики, которая была предметом торговли и служила источником вдохновения для этрусских мастеров прикладного искусства, нередко копировавших формы греческих изделий. Изучение керамики является одной из

Керамика

Из книги Япония до буддизма [Острова, заселенные богами (litres)] автора Киддер Джейн Э.

Керамика В основном керамика эпохи Яёй изготовлена на гончарном круге, поэтому, по сравнению с изделиями эпохи Дзёмон, формы керамики Яёй не столь разнообразны; то же самое относится и к приемам декорирования поверхности сосудов. Более того, различия между типами

Керамика

Из книги Другая история науки. От Аристотеля до Ньютона автора Калюжный Дмитрий Витальевич

Керамика Уже в глубокой древности появились глазурованные глиняные изделия. Наиболее древние глазури представляли собой ту же глину, которая шла на производство гончарных изделий, но тщательно растертую, видимо, с поваренной солью. В более позднее время состав глазурей

Керамика

Из книги Древняя Америка: полет во времени и пространстве. Северная Америка. Южная Америка автора Ершова Галина Гавриловна

Керамика Известнейший археолог-американист Майкл Ко считает, что именно гончары Наска создали лучшую полихромную декорированную керамику Нового Света. Изготовление этих глиняных сосудов было доведено до совершенства. Мастера использовали при росписи по шесть-семь

Керамика

Из книги автора

Керамика Производство керамических изделий - неотъемлемая часть хозяйственного облика любой развитой неолитической культуры оседлых земледельцев. Керамика к тому же представляет собой наиболее массовый материал, находимый при археологических раскопках

Керамика ХХ в.

Из книги Лепка из глины для детей. Развиваем пальцы и голову автора Ращупкина Светлана Юрьевна

Керамика ХХ в. К концу XIX в. художественное качество фарфора снизилось, так как интерес к этому ремеслу пошел на спад, только лишь во второй половине ХХ в. спрос на художественную керамику снова начал возрастать, что конечно же повлекло за собой возрождение этого

Керамика

Из книги Мошенничество в России автора Романов Сергей Александрович

Керамика Большой спрос на черепки и старинную керамику откликнулся в промышленности и у частных производителей, Правда, подражания нельзя назвать чистым обманом, потому как покупателей заведомо могли информировать, что тот или иной сосуд или кувшин сделан по технологии

Керамика

Из книги Энциклопедический словарь (К) автора Брокгауз Ф. А.

Керамика Керамика (собственно Керамевтика; от греч. слова keramoV=кирпич) – производство посуды и других предметов домашнего обихода или строительного назначения из различных сортов глины как таких, которые, будучи вылеплены, только высушиваются в обыкновенной

Керамика

Из книги Большая Советская Энциклопедия (КЕ) автора БСЭ

Кварцевая керамика

Из книги Большая Советская Энциклопедия (КВ) автора БСЭ

Из книги Большая Советская Энциклопедия (РТ) автора БСЭ

Компания «Керамомикс» поставляет керамические трубки, чехлы и соломку из различных керамических материалов, различного назначения и рассчитанные на разную температуру.

Для того, чтобы заказать керамические трубки, чехлы и соломку и уточнить цены, свяжитесь с нашими менеджерами. Телефоны Вы найдете в разделе Контакты.

По возрастанию температуры применения керамические трубки делятся:

Кварцевые трубки

Кварцевые трубки являются наиболее массовой продукцией из кварцевого стекла. Трубки и стержни получают методом горячего формования из газонаплавленного или электровакуумного кварцевого стекла.

Материал трубок отличается химической чистотой, жаропрочностью, устойчивостью к кристаллизации, имеет низкий коэффициент термического расширения (по сравнению с другими керамическими материалами). Кварцевое стекло устойчиво ко всем кислотам за исключением плавиковой и фосфорной. Электрическое сопротивление кварца значительно выше, чем лучших силикатных стекол, что позволяет делать из данного материала прекрасно работающие электроизоляторы.

Кварцевые трубки выдерживают резкий перепад температур - до 1000-1200°С и могут использоваться в кислых и нейтральных средах при температуре до 1250°, устойчивы к кристаллизации (при нагреве до 1200°С, в течении 2 часов) и при нагреве до 1000°С, с последующим охлаждением в проточной воде (15 теплосмен).

Кварцевые трубки применяются для сооружения трубопроводов в химической и пищевой промышленности, используют для транспортирования агрессивных жидкостей и газов.

Кварцевые трубки используются: для указания уровня жидкостей, как комплектующие в промышленном и котельном (как водомерные трубки котлов, водоуказательная трубка показывающая уровень жидкости) оборудовании, в металлургии и литье (пробы металла, кварцевые чехлы, термопары), в электронагревателях, химической (чехлы, колбы, воронки, лабораторная посуда, кварцевая труба) промышленности, в полупроводниковой и светотехнической промышленности (бактерицидные лампы, кварцевые лампы для солярия, ультрафиолетовые лампы), в печестроении уникальные характеристики кварцевого стекла нашли применение в глазках наблюдения, в защитных внешних кожухах на нагревательных элементах , в печах молирования и фьюзинга .

На основе кварцевых трубок строят уникальные трубчатые печи с вращением и наклоном трубы и газовым подводом и уникальные водородные трубчатые печи.

Контакты.

Муллитокремнеземистые трубки (МКР)

Трубки муллитокремнеземистые (МКР) , трубки муллитокремнеземистые с добавкой двуокиси циркония (МКРЦ) применяются для защиты термопар, термоэлектродов, в качестве поддержки спиральных нагревательных элементов в печах сопротивления с нагревательными элементами из фехрали, трубчатых печах в качестве муфеля, в качестве каналов потоков газа (для подвода и отвода газа).

Муллитокремнеземистые изделия трубки и чехлы МКР и муллитокремнеземистые с добавкой двуокиси циркония (МКРЦ) с температурой эксплуатации до 1350°С выпускаются с одним каналом диаметром от 1,5 до 103 мм, длиной от 20 до 2000 мм в зависимости от диаметра. Трубки могут быть изготовлены с одним закрытым концом.

Соломка МКР выпускается с 2 и 4 каналами, наружным диаметром от 3 до 9 мм, длиной до 800 мм.

Свойства материала МКР, изготавливаемые по ТУ 14-8-447-83 приведены в таблице.


Корундовые трубки, чехлы и соломка

Корундовые трубки предназначены для эксплуатации в высокотемпературных электрических печах сопротивления для поддержки и крепежа нагревательных элементов и в трубчатых печах в качестве трубы - муфеля. Чехлы из корунда используются в высокотемпературных печах в качестве защиты платиновых термопар. Соломка из корунда используется в качестве изолятора в платиновых и вольфрамовых термопарах.

Для того, чтобы уточнить цены и сделать заказ, необходимо связаться с нашими менеджерами. Их телефоны Вы найдете в разделе